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Abstract

Most structured peer-to-peer overlays rely on consistent
hashing to determine the node that is responsible for a
given key. For consistent hashing to work properly, it
requires that the nodes have a consistent view of their
neighborhood in the identifier space. However, if routing
anomalies occur in the underlying network, this view can
become inconsistent, causing unstable overlay behavior
and, worse, allowing more than one node to assume re-
sponsibility for ranges of keys.

We present a set of techniques for preventing in-
consistencies under routing anomalies, and we propose
to adopt strategies from mobile ad-hoc networking for
maintaining connectivity in the presence of path fail-
ures. We evaluate our design in the context of Pastry
and present results from a deployment in the PlanetLab
testbed.

1 Introduction

Peer-to-peer (p2p) overlays are usually built on the as-
sumption that the underlying network provides full con-
nectivity. Unfortunately, experience has shown that this
assumption is too optimistic. Real networks suffer from
a variety of routing problems, such as loops, miscon-
figurations, route ‘fluttering’, and infrastructure failures
[13, 16, 18]. Almost all of these anomalies are tempo-
rary, but when they do occur, some unlucky nodes may
lose connectivity to part of the network. Many anoma-
lies are not even symmetric; thus, messages from nodeA
may still reach nodeB when, fromB’s point of view,A
has already become unreachable.

In general, the presence of path failures has little effect
on overlay networks, since they can use alternate routes
– systems like RON [1] directly exploit this to improve
routing performance. However, path failures may affect
the nodes’ perception of overlay membership. For ex-
ample, if a path between two overlay membersA andB
becomes unavailable,B may be led to believe thatA has
left the overlay, and vice versa.

In structured overlays like Pastry [17] and Chord [19],

where information about nearby nodes is used to im-
plement consistent hashing, such inconsistent views can
have serious effects, since they may cause two nodes to
assume responsibility for the same part of the key space.
As a consequence, applications built on top of the over-
lay may violate mutual exclusion, suffer data loss, or
experience diverging state. For example, an overlay-
based file system might use consistent hashing to asso-
ciate each file with a single node to serialize updates. In
this case, inconsistencies can cause multiple nodes to ac-
cept updates for the same file. Thus, some updates may
be applied incompletely, in the wrong order, or not at all.

The techniques used in most overlays to resolve in-
consistencies are not designed for an environment with
path failures; in fact, some explicitly make the assump-
tion that path failures do not occur [4]. However, using
results from a recent study of connectivity in the Planet-
Lab testbed, we found that path failures are a common
phenomenon in the Internet today. During a period of 10
days in September 2004, all of the 192 nodes we exam-
ined experienced at least one path failure. While 35% of
the failures lasted less than one hour, 9% of the failures
persisted for more than a day. This result, which is con-
sistent with other studies [6,12,13], clearly demonstrates
that overlay protocols must be designed and evaluated in
an environment in which path failures occur.

In this paper, we present a set of techniques to prevent
such inconsistencies by ensuring that at any time, at most
one node is responsible for any given key. Our failure
model explicitly includes asymmetric connectivity and
network partitions. We adopt techniques from routing in
mobile ad-hoc networks, specifically from the DSR [11]
protocol, to maintain connectivity in the presence of path
failures. As an additional benefit, our solution naturally
allows nodes behind NATs and firewalls to participate in
the system.

We have already integrated some of our techniques
with the FreePastry [9] implementation of Pastry, and we
demonstrate their effectivity by reporting preliminary re-
sults from a PlanetLab deployment.

The rest of this paper is structured as follows: Sec-
tion 2 discusses related work, and Section 3 presents
results from our study of routing anomalies in Planet-



Lab. In Section 4, we describe the design of our resilient
transport layer and argue for its correctness. Section 5
describes our experience with the redesigned Pastry pro-
tocol and Section 6 presents our conclusions.

2 Related Work

RON [1] is an overlay that is explicitly designed to op-
timize network performance in the presence of path fail-
ures. In a RON overlay, traffic can be re-routed around a
failure via a multi-hop virtual link. However, since RON
provides essentially a best-effort service, it does not have
a strong consistency requirement like Pastry and thus can
use a much simpler membership protocol.

UIP [8] uses virtual links to form connections between
nodes in arbitrary topologies, which may include NATs
and firewalls. However, UIP provides only basic connec-
tivity and no higher-level primitives such as consistent
hashing, so consistency is not an issue.

Bamboo [15] is a variant of Pastry that has extensions
for better performance under high churn. The Bamboo
paper was the first quantitative study of routing inconsis-
tencies in Pastry, although the authors considered only
the impact of churn and not that of path failures. In net-
works such as PlanetLab, where path failures are com-
mon, Bamboo still offers high stability; however, it can-
not guarantee consistency.

Castro et al. [4] describe a set of extensions to MSPas-
try which, among other things, explicitly address the is-
sue of routing consistency under churn. However, the
authors a) use direct probing to detect failures, and b) as-
sume that non-faulty nodes are never considered faulty.
Path failures violate this assumption and may lead to
routing inconsistencies.

In addition to the classical study conducted by Paxson
[13], there are several other studies which support our
claim that path failures are a common problem. Labovitz
et al. studied routing table logs at Internet backbones and
found that 10% of all considered routes were available
less than 95% of the time [12]. Chandra et al. found that
5% of all detected failures lasted more than 10,000 sec-
onds; some failures persisted for over a day before they
were repaired [6].

3 Routing anomalies

Since our initial design assumed full network connectiv-
ity, the failure of a TCP connection attempt to a remote
node was interpreted as an indication that remote node
had failed. This assumption held for the most part within
the Riceintranet. However, when we deployed ePOSTon
PlanetLab, we observed frequentrouting anomalies, or
instances where live nodes were unable to route packets
to each other. Our discovery of routing anomalies is not

unique; others have noted similar behavior on the general
Internet [2,10,14].

Routing anomalies can lead to inconsistencies in over-
lay operation. Overlay networks such as Pastry tolerate
connectivity problems among pairs of nodes: for rout-
ing table entries, two nodes that can no longer reach
each other simply select alternate entries. As a result,
key lookup operations tend to not be affected by routing
anomalies, because the overlay generally finds a working
overlay route to the node that is responsible for the key.
However, following a key lookup, the application usu-
ally wishes to open a direct connection between client
node and the responsible node, for instance, to efficiently
transfer data. If the Internet connection between these
two nodes does not work, then the application will ob-
serve an anomaly: the responsible node for the key can
be looked up and reached via an overlay route, but an
attempt to directly connect to that node fails.

A simple workaround would be to fall back on us-
ing overlay routes when such a problem occurs. How-
ever, we found that this approach tends to congest over-
lay links with bulk data traffic, which can cause long de-
lays for key lookups throughout the overlay. Before we
describe our redesign to address this problem, we first
present some data on the frequency of routing anoma-
lies.

3.1 Anomaly frequency

We examined data collected from the PlanetLab testbed
collected over 10 days in September of 2004. At the
time, PlanetLab consisted of 435 nodes spread over 201
sites, including nodes in both of the Americas, Europe,
the Middle East, Asia, and Australia. The data we exam-
ined consisted of node-to-node pings collected every 15
minutes over the course of the run, taken from [20].

In order to investigate the impact of routing anoma-
lies, we limited our evaluation to nodes which were on-
line and reachable by at least one other node. This left
us with 192 distinct nodes. Figure 1 shows the results
of site-to-site pings for the 192 considered nodes. In the
left graph, the pixel at the location(x,y) represents the
number of times a nodex was able to successfully ping
nodey. White pixels indicate no failures, while darker
pixels indicate an increasing frequency of ping failures.
The right graph shows pairs that were never successful
in pinging each other. The data we used for both graphs
was collected between September 1 and September 10,
2004.

These results clearly show that routing anomalies are
a persistent problem in PlanetLab. All of the 192 nodes
we examined experienced at least one routing anomaly
during the experiment; many of them experienced sev-
eral. The average duration of an anomaly is 8.8 hours,



Figure 1. Transient (left) and permanent
(right) path failures in PlanetLab during
10 days in September 2004
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Figure 2. CDF of routing anomaly durations
for 192 PlanetLab nodes for September 1 to
September 10, 2004.

but the distribution is heavy-tailed; a full 35 % of the
outages were present for less than one hour, while 9 %
were longer than a day. Figure 2 shows the cumulative
distribution of anomaly duration.

3.2 Redesign: Virtual links

To ensure that all pairs of overlay nodes can efficiently
communicate despite routing anomalies, we provide ded-
icated bulk transfer connections via intermediate nodes.
We view all node connections asvirtual links, rather than
physical links. For example, assume that a link from
A→ B has failed. If there is another nodeC that can still
reachB, A can replace its direct linkA→ B with a virtual
link A → C → B. Note that in the common case where
no path failure has occurred, the virtual link is identi-
cal to the actual physical link and thus requires no extra
overhead. The use of virtual links is a well-known tech-
nique that is widely used in mobile ad-hoc networks [11],
where path failures are common. On the general Internet
virtual links have been used by several systems to route
around an increasing number of observed routing anoma-
lies [2,10].

3.3 Redesign: Source routes

We usesource routingto forward packets over virtual
links. Messages sent via source routes are not subject
to normal overlay routing—they are either transmitted
along the specified path or dropped if an error occurs.
This is important to prevent routing loops, as source rout-
ing may not observe the normal Pastry routing invariants
(e.g. always routing to a node with nodeId closer to the
key). Moreover, such source routed virtual links use ded-
icated, coupled TCP connections to ensure flow control
along the entire virtual link.

Every node periodically advertises its best virtual
links to all other leafset members, who use them to derive
virtual links for themselves. For example, ifA advertises
a link A → B to C, andC’s best link toA is currently
C→ D → A, thenC concludes thatB may be reached via
C→ D → A→ B. Nodes maintain a set of fresh links for
each destination, but during normal operation, only the
shortest virtual link is used.

If the shortest virtual link to a destinationX is not a
direct link, the node occasionally sends a probe packet
directly to X, using exponential back-off. If the probe
is answered, the physical link toX is re-enabled, and all
other virtual links are updated accordingly. This ensures
that after a transient path failure, the system eventually
returns to using physical links.

When a virtual link fails, the sender starts using an-
other link, if one is available. If not, the sender can
broadcast aroute requestto all of its leafset members,
who attempt to forward it to the destination. The desti-
nation responds with aroute reply. This mechanism was
inspired by the DSR ad hoc routing protocol [11] and
does not require connectivity to be symmetric. Thus, it
can not only handle asymmetric path failures, it also al-
lows us to incorporate nodes behind NATs, firewalls, and
advanced traffic shapers into the overlay, whose connec-
tivity may be asymmetric as well.

3.4 Redesign: Improvement

We incorporated virtual links and source routing into our
ePOSTimplementation. As a result, routing anomalies
are no longer visible to applications. In a deployment
in PlanetLab, the redesigned system communicated be-
tween 59,104 distinct pairs of machines and found that
9.1% of these pairs were unable to establish a direct con-
nection. Among these cases that required an indirect
route, 9.8% required a source route with just one extra
hop. We monitored all of the routes in the network for a
period of three days, and found that the percentage of in-
direct routes varied between 8% and 11%. The results of
this experiment are shown in Figure 3. Source routes and
virtual links allowed the system to route around network
anomalies in all cases, as expected.
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Figure 3. Percentage of indirect routes over
a period of three days, March 17 to March
20, 2005.

4 Overlay consistency

In a structured overlay, the responsibilities of a node are
largely determined by the region of key space it is cur-
rently responsible for. Many subsystems of ePOSTuse
this key space information; for example, PAST uses it to
determine which objects it should store a replica of, and
Scribe uses it to decide whether or not it should be the
root of a given multicast tree. Generally, a node will ac-
cept a message if its key falls into the range the node is
currently responsible for; otherwise it will drop the mes-
sage or route it to another node.

In the initial design of Pastry, a simple mechanism
was used to determine the responsible key range. Nodes
would monitor the liveness of nodes in their own leaf-
sets by pinging them occasionally, and remove them if
they did not respond for some time. The responsible key
range was calculated simply by considering the nodeIds
of the two neighboring nodes in the identifier space.

This sufficed within our local ring at Rice. However,
when we deployed ePOSTon PlanetLab, we observed se-
vere malfunctions: e-mails would not get delivered, and
objects could not be inserted into PAST or would spon-
taneously roll back to previous versions. The underly-
ing cause was that messages with the same key were de-
livered to different nodes, depending on the node from
which the lookup started. Some investigation revealed
that path failures and node overload were causing in-
consistencies in the perceived liveness of nodes. This
in turn led to inconsistencies between the nodes’ leaf-
sets and thus caused messages to be delivered incorrectly.
In fact, we examined the running ePOSTnetwork and
found that, without virtual links, approximately 5.2% of
all routed messages could be claimed by more than one
node, mainly due to the large numbers of path failures.

Routing consistency is a fundamental property for a
p2p system that needs to maintain mutable data. With-

out it, replicas of mutable data diverge, updates may be
lost and the state of a mutable object may appear incon-
sistent depending on which replica is reached during a
lookup. Other overlays such as Bamboo [3] endeavor
to reduce overlay maintenance overhead, but do not at-
tempt to provide routing consistency in the event of path
failures. Thus, we decided to redesign Pastry’s leafset
stabilization protocol to guarantee, with high probabil-
ity, that only one node considers itself responsible for
a given time at any time despite routing anomalies. A
similar approach was taken in MSPastry [5], but routing
anomalies were not considered as part of that work.

4.1 Redesign: Requirements

Our new leafset stabilization protocol provides routing
consistency, which is defined as follows:

With high probability, there is at most one node at any
given time t that will accept messages for a key k.

Since the decision whether or not to accept a given mes-
sage is based on the leafset, the leafset stabilization pro-
tocol must satisfy the following constraints:

1. When a new node joins, it must make sure that the
current members stop accepting message for their
part of the key spacebeforethe new node starts ac-
cepting messages.

2. When a node fails or leaves, it must make sure that
the neighbors take over its portion of key space only
after they have established that the node no longer
accepts messages.

3. After joins or departures subside, it must ensure that
the leafsets eventually reflect a consistent view of
overlay membership.

Our stabilization protocol is based on the assumption
that leafsets are alwaysconnected, i.e. that for each pair
of leafset membersA andB, there exists a path of leafset
nodesA, N1, ... Nk, B (whereNi is in the leafset) such
that each is directly connected to the next, andA is there-
fore able to send messages toB along this path. This
assumption requires that the source routing mechanism
described in Section 3.3 discovers a route if one exists.
As we will show in Section 4.5, this is a reasonable as-
sumption.

4.2 Liveness checks

Direct neighbors in the key space constantly monitor
each other’s liveness. For this purpose, they make sure
that they receive at least one message from each other
within a configurable time periodTP, on the order of 30



seconds. When there is no overlay traffic to send, they
may send aPing message instead. EachPing must be
answered immediately by aPong, which also must in-
clude the source route used in the correspondingPing
as payload.

Should a nodeA not receive any traffic fromB af-
ter TP, A starts sending periodicPings to B over the
best known virtual link. ShouldA still not receive any
messages after time 2TP, A starts sendingPing to B via
the best known route to each of its leafset members. If
a Pong arrives now,A changesB’s virtual link to the
source route listed in thePong.

However, if 3TP expires before any route is found,A
has established thatnoneof the other leafset members
can directly reachB any more, so under our assump-
tion that leafsets are always connected,B cannot be alive.
Hence,A declaresB dead. However,A does not remove
B from its leafset until anotherTP has passed, to ensure
that all other leafset nodes declareB dead. Once this total
of 4TP has expired,A can removeB from the leafset.

The parameterTP directly influences the bandwidth
required for maintenance. Higher values result in lower
bandwidth, but also increase the latency between a node
failure and the time when its portion of key space is taken
over by the other nodes.

4.3 Key ownership

To prevent overlaps between the responsible region of
a newly joined node and that of its neighbors, we in-
troduce the concept ofkey ownership. Each node has
a range of keys which it owns, and it is not allowed to
accept messages for keys outside of this range. When
the first nodeN1 with nodeIdk1 in the network starts up,
it automatically has ownership over the entire key range.
As nodes join, they request range transfers from existing
nodes. For example, when the next nodeN2 with nodeId
k2 boots up, it will askN1 to transfer ownership of the
range

[

k1 +k2

2
mod 2k

,

k1 +k2+2160

2
mod 2160

)

Note that once a node releases ownership over a range
of keys, it is no longer able to accept message for those
keys. Additionally, each node must obtain ownership
transfers frombothof its neighbors before accepting any
messages. During the interim time period message may
dropped at the expense of preserving consistency.

If we assume for the moment that no nodes ever leave
the overlay (i.e. all nodes stay forever), it is clear that
routing consistency is maintained. Since the key space
is repeatedly partitioned up, nodes never conflict in their
owned ranges. However, as churn is common and rout-

ing anomalies are possible, we must show that reclaim-
ing transferred key space does not break routing consis-
tency. In order to do so, we impose the rule that a node
may reclaim its neighbor’s owned keys only if the node
is declared dead (as discussed in Section 4.2). If a neigh-
bor is declared dead, then, by the assumption that leafsets
are connected, we know that no leafset member is able to
reach the neighbor, and we can therefore assert that the
neighbor is dead. In this case, the remaining node may
reclaim its portion of the neighbor’s key space.

4.4 Ring partitions

While node failures are handled by the techniques above,
a little more is needed to support ring partitions, or in-
stances where a leafset is split into multiple subsets of
connected nodes. To maintain consistency under these
scenarios, we impose the rule that if a node notices that
more than half of its leafset dies within one period (4TP),
the node automatically resigns from the network. This
makes it likely that, should a network partition occur,
only a majority subset, if any, survives. Nodes that resign
attempt to rejoin the network, using exponential backoff
on retry intervals.

4.5 Justification

When designing this protocol, we assumed that leaf-
sets were connected, or that in a given nodeN’s leafset
[N1,N2, ...,N, ...,Nk] there always existed a path between
N and everyNi. In this section, we provide a quick justi-
fication of why this is a reasonable assumption.

As mentioned earlier, we assume that each pathNi →
Nj in a given leafset fails independently with probability
p. For simplicity, we consider virtual links with at most
two hops. ThenN cannot reachNi if the direct pathN →
Ni fails and for every leafset memberLi, either the path
N → Li or the pathLi → Ni fails. If the leafset containsl
nodes on each side, this occurs with probability

P1 = p·
(

1− (1− p)2)m

wherem is the number of nodes in the shared leafset of
N andNi, which ranges froml −1, whenN andNi are far
apart, to 2(l − 1), when they are adjacent. We consider
N andNi disconnected if either of them cannot reach the
other one. This probability is

P2 = 1− (1−P1)
2

As stated above, a routing consistency is broken only ifN
is disconnected from either his left or his right neighbor.
This happens with probability

P3 = 1− (1−P2)
2



If we assume small leafsets (l = 8) and a massive failure
of p = 0.1, thenP3 ≈ 6.072·10−12, so even in a network
with N = 10000 nodes, the probability of finding a single
disconnected node is less than 6.1·10−8. If we consider
virtual links with more than two hops, the resulting prob-
ability is even lower. For comparison, in a protocol that
requires a physical link between each node and his right
and left neighbors, the probability of an inconsistency is

P′
3 = 1− (1− p)4

For the parameters mentioned earlier,P′
3 ≈ 0.3439, so

about one-third of the nodes would be disconnected.

5 Experience

We have implemented the above techniques into FreeP-
astry [9], and have deployed the implementation on a
ring of 320 PlanetLab nodes. While the previous ver-
sions of FreePastry suffered from numerous routing in-
consistencies when deployed on this set of machines, the
new version has been been successfully run for multiple
days without any detected routing inconsistencies. Out
of the 44,480 detected routes, we found that multiple-
hop routes were required in 1,307, or 2.9%, of the cases.
The vast majority of these (1,293) were two-hop routes,
while three-hop routes were used 13 times and one four-
hop route was required.

Additionally, we found the bandwidth overhead of our
techniques to be very small - on average, nodes used
less than 1 KB/s of bandwidth. Even during the booting
phase, where all machines were brought online within
30 minutes and most routes were discovered, the peak
bandwidth at any node was under 10 KB/s. This imple-
mentation of our protocol will be part of the upcoming
FreePastry 1.4 release [9].

6 Conclusions and Future Work

In this paper, we have argued that overlay maintenance
protocols must be designed for an environment in which
path failures are common. Using experimental data from
the PlanetLab testbed, we have demonstrated that long-
lived path failures occur frequently in the Internet today,
and we have shown that this can lead to routing inconsis-
tencies in overlays, with catastrophic effects on applica-
tions. Finally, we have presented the design of a main-
tenance protocol for the Pastry overlay that increases its
resilience against path failures by several orders of mag-
nitude.
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