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Abstract

Generic peer-to-peer (p2p) overlay networks like CAN,
Chord, Pastry andTapestryoffer a novel platform for a va-
riety of scalableand decentralizeddistributedapplications.
Thesesystemsprovide efficient and fault-tolerant routing,
object location and load balancingwithin a self-organizing
overlay network. One importantaspectof thesesystemsis
how they exploit networkproximity in the underlyingInter-
net. In this paper, we presenta comprehensivestudyof the
networklocality propertiesof a p2poverlaynetwork.Results
obtainedvia analysisand via simulationof two large-scale
topology modelsindicatethat it is possibleto efficientlyex-
ploit networkproximity in self-organizingp2psubstrates. A
simpleheuristicmeasuresa scalarproximitymetricamonga
small numberof nodes,incurring only a modestadditional
overheadfor organizing and maintaining the overlay net-
work. Theresultinglocality propertiesimprove application
performanceand reducenetworkusage in the Internetsub-
stantially. Finally, we studythe impact of proximity-based
routingon theload balancingin thep2poverlay.

1 Intr oduction

Severalrecentsystems(CAN [6], Chord[10], Pastry[7] and
Tapestry[14]) provide a self-organizingsubstratefor large-
scalepeer-to-peerapplications.Thesesystemscanbeviewed
asproviding a scalable,fault-tolerantdistributedhashtable,
in which any item canbe locatedwithin a boundednumber
of routinghops,usinga smallper-noderoutingtable.While
thereare algorithmic similarities amongeachof thesesys-
tems,oneimportantdistinctionlies in theapproachthey take
to consideringandexploiting proximity in theunderlyingIn-
ternet. Chord,for instance,doesnot currentlyconsidernet-
work proximity atall. Asaresult,its protocolfor maintaining
the overlaynetwork is very light-weight,but messagesmay
travel arbitrarily longdistancesin theInternetin eachrouting
hop.

In CAN, eachnodemeasuresits network delayto a setof

landmarknodes,in aneffort to determineits relativeposition
in the Internetand to constructan Internettopology aware
overlay. TapestryandPastry exploit locality by measuring
a proximity metric amongpairsof nodes,andby choosing
nearbynodesfor inclusionin their routing tables. Early re-
sults for the resultinglocality propertiesare promising. In
TapestryandPastry, for instance,theaveragetotal “distance”
traveled by a messageis only a small and constantfactor
larger than the “distance” betweensourceand destination
in the underlyingnetwork. However, theseresultscomeat
theexpenseof moreexpensiveoverlaymaintenanceprotocol,
relative to Chord. Also, proximity basedrouting may com-
promisethe loadbalancein thep2poverlaynetwork. More-
over, it remainsunclearto whatextentthelocality properties
hold in the actualInternet,with its complex, dynamic,and
non-uniformtopology. As a result,thecostandeffectiveness
of proximity basedrouting in thesep2poverlaysremainun-
clear.

To addressthesequestions,this paperpresentsresultsof a
comprehensivestudyof Pastry’s locality propertiesvia anal-
ysis and via simulationsbasedon two large-scaleInternet
topologymodels. Moreover, we proposean improvednode
join andfailureprotocolthatsubstantiallydecreasestheover-
lay maintenancecost relative to the original implementa-
tion [7], attheexpenseof anegligible reductionin thequality
of thePastry’sroutingproperties.Theresultsindicatethatthe
locality propertiesarerobust on a variety of network topol-
ogy models. Moreover, the load imbalancecausedby the
proximity basedroutingis modest,andhot spotscanbeeas-
ily dispersedwithout affecting overall routequality. While
our analysisand simulationsare basedon Pastry, many of
ourresultsapplyto TapestryandChordaswell. Weconclude
thatit is possibleto exploit network proximity in p2poverlay
networkswith low overheadandwithoutcompromisingtheir
self-organizingandloadbalancingproperties.

Therestof thispaperisorganizedasfollows.Relatedwork
is discussedin Section2. In Section3, we provide a brief
overview of thePastryprotocol. Pastry’s locality properties,
andthe new protocolsfor nodejoining andfailure recovery
arepresentedin Section4. An analysisof Pastry’s locality
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propertiesfollows in theSection5. Section6 presentsexper-
imentalresults,andweconcludein Section7.

2 Relatedwork

CAN [6], Chord[10] andTapestry[14] arecloselyrelatedto
Pastry. Eachof theseprotocolsform a self-organizingover-
lay network andprovide a load-balanced,fault-tolerantdis-
tributedhashtable,in whichitemscanbeinsertedandlooked
up in a boundednumberof forwardinghops.CAN, Tapestry
andPastryeachuseheuristicsto exploit proximity in theIn-
ternet,andtheresultingpropertieshavebeenstudiedin prior
work. To the bestof our knowledge,this paperis the first
studythatlooksatbothcostsandbenefitsof proximity based
routing in a p2p overlay, andconsidersthe impactof node
failureson thosecostsandbenefits.

PastryandTapestryarerelatedto the work by Plaxtonet
al. [5] and to routing in the landmarkhierarchy[12]. The
approachof routingbasedon addressprefixes,which canbe
viewedasa generalizationof hypercuberouting,is common
to all theseschemes.However, neitherPlaxtonnor theland-
markapproacharefully self-organizing.PastryandTapestry
differ in their approachto locating the numericallyclosest
nodein the sparselypopulatednodeIdspace,and for man-
agingreplication. Pastryusesoverlappingsetsof neighbor-
ing nodesin the nodeIdspace(leaf sets),both to locatethe
destinationin the final routing hop, andto storereplicasof
dataitemsfor fault tolerance.Tapestryusesa differentcon-
ceptcalledsurrogaterouting to locatethedestination,andit
insertsreplicasof dataitemsusingdifferentkeys. The ap-
proachto achieving network locality is very similar in both
systems.

The Chord protocol is closely related to Pastry and
Tapestry, but insteadof routing basedon addressprefixes,
Chordforwardsmessagesbasedonnumericaldifferencewith
the destinationaddress.Unlike PastryandTapestry, Chord
currentlymakesnoexplicit effort to exploit network proxim-
ity. However, locality heuristicssimilar to the onesusedin
Pastrycouldpresumablybeaddedto Chord.

CAN routesmessagesin a
�
-dimensionalspace,where

eachnodemaintainsa routing table with ��� ���
entriesand

any nodecan be reachedin ��� �
	���
����
routing hops. Un-

like Pastry, TapestryandChord,theCAN routingtabledoes
not grow with the network size,but the numberof routing
hopsgrows fasterthan ����� 	

. The work on CAN [6] ex-
ploredtwo techniquesto improveroutingperformanceby us-
ing informationaboutthenetwork topology. In thefirst tech-
nique,eachnodemeasurestheRTT to eachof its neighbors
andmessagesare forwardedto the neighborwith the max-
imum ratio of progressto RTT. This techniquediffers from
theoneusedin Pastrybecausethesetof neighborsof a node
is chosenwithout regardto their proximity; this hasthedis-
advantagethatall neighborsmaybequitefar from thenode.

The secondtechniquemeasuresthe distancesbetweeneach
nodeanda setof landmarkservers to computethe coordi-
natesof the nodein the CAN spacesuchthat neighborsin
the CAN spacearetopologicallyclose. This techniquecan
achieve goodperformancebut it hasthedisadvantagethat it
is not fully self-organizing; it requiresa setof well-known
landmarkservers. In addition, it may causesignificantim-
balancesin the distribution of nodesin the CAN spacethat
leadto hotspots.

Existing applications built on top of Pastry include
PAST [8] andSCRIBE[9]. Otherpeer-to-peerapplications
that were built on top of genericrouting and location sub-
stratesareOceanStore[3] (Tapestry)andCFS[2] (Chord).

3 Pastry

Pastry is describedin detail in [7], anda brief summaryis
providedhere.Pastryis ageneric,efficient,scalable,fault re-
silient, andself-organizingpeer-to-peersubstrate.EachPas-
try nodehasa unique,uniform randomlyassignednodeIdin
a circular128-bit identifierspace.Givena 128-bitkey, Pas-
try routesanassociatedmessagetowardsthelivenodewhose
nodeIdis numericallyclosestto thekey. Moreover, eachPas-
try nodekeepstrack of its neighboringnodesin the names-
paceand notifies applicationof changesin the set. These
capabilitiescanbe usedto build a distributed,fault-tolerant
hashtable,which in turn canbe usedto supporta variety of
decentralized,distributedapplications.

Assuminga network consistingof
	

nodes,theexpected
numberof forwarding hops to deliver a messageswith a
randomkey is ������������� 	��

( � is a configurationparameter
with typical value4). Thetablesrequiredin eachnodehave
only ��� ��������� 	!�

entries,whereeachentrymapsan existing
nodeIdto theassociatednode’sIP address.Uponanodefail-
ureor thearrival of a new node,theinvariantsin all affected
tablescanbe restoredby exchanging����� ��� � � 	!�

messages.
In thefollowingparagraphs,webriefly sketchthePastryrout-
ing scheme.

Nodestate: For thepurposesof routing,nodeIdsandkeys
arethoughtof asa sequenceof digits in base"�# . A node’s
routing table is organizedinto $�"�%
&'"(# rows and "(#*)+$
columns. The "(#,)-$ entriesin row . of the routing table
referto nodeswhosenodeIdssharethefirst . digits with the
presentnode’snodeId;the .0/1$ th nodeIddigit of a nodein
column 2 of row . equals2 . The columnin row . corre-
spondingto thevalueof the .3/4$ ’sdigitsof thelocalnode’s
nodeIdremainsempty. Figure1 depictsanexamplerouting
table.

A routing table entry is also left empty if no nodewith
the appropriatenodeIdprefix is known. The uniform ran-
dom distribution of nodeIdsensuresan even populationof
thenodeIdspace;thus,on averageonly ������� � � 	��

levelsare
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Figure1: Routingtableof a Pastrynodewith
nodeIdC(D�EF$HG , �JILK . Digits arein base16, G
representsanarbitrarysuffix. TheIP address
associatedwith eachentryis not shown.
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Figure 2: Routing a messagefrom nodeC
D'E_$�`ba with key
� K
C�E_$Ha . Thedotsdepictlive

nodesin Pastry’scircularnamespace.

populatedin the routing table. EachnodemaintainsIP ad-
dressesfor thenodesin its leaf set. Theleaf setis thesetof �
nodeswith nodeIdsthatarenumericallyclosestto thepresent
node’s nodeId,with �c&�" largerand �c&�" smallernodeIdsthan
thecurrentnode’s id. A typical valuefor � is approximately�d%feg� ��� �ih 	��

.

Messagerouting: At eachrouting step,a nodenormally
forwardsthe messageto a nodewhosenodeIdshareswith
the key a prefix that is at leastone digit (or � bits) longer
than the prefix that the key shareswith the presentnode’s
id. If no suchnodeis known, the messageis forwardedto
a nodewhosenodeIdsharesa prefix with thekey aslong as
thecurrentnode,but is numericallycloserto thekey thanthe
presentnode’s id. Sucha nodeis guaranteedto exist in the
leaf set unlessthe messagehasalreadyarrived at the node
with numericallyclosestnodeId,or its immediateneighbor1.
And,unlessall �c&�" nodesin onehalf of theleafsethavefailed
simultaneously, at leastoneof thosenodesmustbelive.

The Pastry routing procedureis shown in Figure3. Fig-
ure2 showsthepathof anexamplemessage.Analysisshows
thattheexpectednumberof forwardinghopsisslightlybelow�d� ��� � � 	��

, with adistributionthatis tight aroundthemean.A
deterministicupperboundfor thenumberof routinghopsis
128/b+1,assumingcorrectrouting tablesandno concurrent
nodefailures.Moreover, simulationshows thattheroutingis
highly resilientto nodefailures.

To achieve self-organization, Pastry must dynamically
maintain its nodestate,i.e., the routing table and leaf set,
in thepresenceof new nodearrivals,nodefailures,nodere-
coveries,andnetwork partitions.

1Thelastclausetakescareof a pathologicalcasewherethenumerically
closestnodedoesnot shareanodeIdprefixwith thekey.

(1) if ( j�k l monqp�rtsupvpowyxdz|{~}����v��zy}������ )
(2) // j is within numericalrangeof local leaf set(mod ��� �t� )
(3) forwardto zy� , s.th. � j���z��i� is minimal;
(4) else
(5) // usetheroutingtable
(6) Let ����mo���cx�j����(� ;
(7) if ( �g���} existsandis live)
(8) forwardto �g���} ;
(9) else
(10) // rarecase
(11) forwardto r���z*��� , s.th.
(12) mo���cx�r��tj������ ,
(13) � r ��j���¡4� �f��j��

Figure3: Pastryroutingprocedure,executedwhenamessage
with key

�
arrivesat a nodewith nodeId E . ¢¤£¥ is theentryin

theroutingtable ¢ at column ¦ androw � . § £ is thei-th clos-
estnodeIdin the leaf set § , wherea negative/positive index
indicatescounterclockwise/clockwisefrom thelocal nodein
the id space,respectively. §,¨ ¥ 
 � and § ¥ 
 � are the nodesat
the edgesof the local leaf set.

� ¥ representsthe � ’s digit in
thekey

�
. ©«ªF��� EF¬�� � is the lengthof theprefix sharedamongE and � , in digits.

Nodeaddition: A newly arrivingnodewith thenew nodeId­
caninitialize its stateby askingany existingPastrynode®

to routeaspecialmessageusing
­

asthekey. Themessageis
routedto theexistingnodē with nodeIdnumericallyclosest
to

­
.

­
thenobtainsthe leaf setfrom ¯ andthe ¦ th row of

the routing tablefrom the nodeencounteredalongtheroute
from ® to ¯ whosenodeIdmatches

­
in thefirst ¦�)°$ dig-

its. Usingthis information,
­

cancorrectlyinitialize its own
routingtableandleaf set.Finally,

­
announcesits presence
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to the initial membersof its leaf set, which in turn update
their own leaf setsandrouting tables.Givenan appropriate
leaf setsize(e.g., ±²"�# ), onecanshow that,with high prob-
ability, all nodeswhoserouting tablesare affectedby

­
’s

arrival arenotified.

Nodefailur e: Whena nodefails, the leaf setsandrouting
tablesof a numberof othernodesmustbeupdated.Leaf set
membershipsis actively maintained.The membersof each
leafsetperiodicallyexchangekeep-alivemessages.If anode
is unresponsive for a period ³ , it is presumedfailed. All
membersof the failed node’s leaf setare thennotified and
they updatetheir leaf sets.Sincethe leaf setsof nodeswith
adjacentnodeIdsoverlap,this updateis trivial.

Routingtableentriesthatreferto failednodesarerepaired
lazily. During messageforwarding,whena routingtableen-
try is found that is eitheremptyor the referencednodehas
failed,Pastryroutesthemessageto anothernodewith numer-
ically closernodeId(lines 11-13in Figure3). If the down-
streamnodehasa routing tableentry that matchesthe next
digit of the message’s key, it automaticallyinforms the up-
streamnodeof thatentry.

Node recovery: The noderecovery protocol is optimized
to reducetheoverheadof temporarynodefailures.A recov-
ering Pastry nodefirst attemptsto contactnodesin its last
known leaf setandobtainstheir leaf sets. If the numerical
rangeof nodeIdsin oneof thosesetsstill includestherecov-
eringnode’s nodeId,thenodeupdatesits own leaf setbased
on the information it receivesand then notifies the current
membersof its leaf setof its presence.Otherwise,the node
follows thenormalprotocolfor nodeaddition.

Network partitions: A network partitioncancausetheap-
parentsimultaneousfailure of a large numberof nodesat
randompoints in the nodeIdspace.In extremecases,such
a partitioncouldcausethefailureof �c&�" nodeswith adjacent
nodeIds.This (rare)caserequiresa specialrecovery proce-
dure,sincelivenodesthatareseparatedby �c&�" or morefailed
nodesin thenodeIdspacearenotawareof eachother. Briefly,
thelivenodesat theedgesof suchasequenceof failednodes
locateeachotherby sendingmessagestowardstheotherus-
ing theirremainingliveroutingtableentries,thenform anew
leafset.

4 Pastry locality properties

This sectionfocuseson Pastry’s locality properties. Pastry
seeksto exploit proximity in theunderlyingInternet,by rout-
ing throughasshortapathaspossible,findingnearestcopies
of objects,etc. It reliesonascalarproximity metricthatindi-
catesthe“distance”betweenany givenpair of Pastrynodes.

It is assumedthat eachPastry nodecan measureor other-
wise obtainthe distancebetweenitself andany nodewith a
known IP address.Furthermore,it is assumedthat theprox-
imity metricreflectsstaticpropertiesof theunderlyingphys-
ical network, ratherthanprevailing traffic conditions.

The choiceof a proximity metric dependson the desired
qualitiesof theresultingoverlay(e.g.,low delay, high band-
width, low network utilization). In practice,metricssuchas
round-trip time (minimum of a seriesof pings),bandwidth
(measured,for instance,using packet pair techniques),the
numberof IP routing hops(measuredusing traceroute),or
somecombinationthereofcould be used. Choosingan ap-
propriateproximity metric for p2p overlay networks is the
subjectof futurework andbeyondthescopeof this paper.

Pastry’s locality propertiesderivefrom its attemptto mini-
mizethedistance,accordingto theproximity metric,to each
of thenodesthatappearin a node’s routing table,subjectto
the constraintsimposedon nodeIdprefixes. It is expensive
to achieve this goalpreciselyin a largesystembecauseit re-
quires ��� 	!�

communication.Therefore,Pastryusesheuris-
ticsthatrequireonly ��� ������� � 	��

communicationbut only en-
surethatroutingtableentriesareclosebut notnecessarilythe
closest.More precisely, Pastryensuresthe following invari-
antfor eachnode’sroutingtable:
Proximity invariant: Each entry in a node

­
’s routing ta-

ble refers to a nodethat is near
­

, according to theproxim-
ity metric,amongall live Pastrynodeswith theappropriate
nodeIdprefix.

In Section4.1, we show how Pastry’s nodejoining pro-
tocol maintainsthe proximity invariant. Next, we consider
theeffect of theproximity invarianton Pastry’s routing. Ob-
serve that asa resultof the proximity invariant,a message
is normallyforwardedin eachroutingstepto a nearbynode,
accordingto the proximity metric, amongall nodeswhose
nodeIdsharesa longerprefixwith thekey. Moreover, theex-
pecteddistancetraveledin eachconsecutive routingstepin-
creasesexponentially, becausethedensityof nodesdecreases
exponentiallywith the lengthof theprefix match.Fromthis
property, one can derive threedistinct propertiesof Pastry
with respectto network locality:
Total distance traveled The expecteddistanceof the last
routingsteptendsto dominatethetotaldistancetraveledby a
message.As a result,theaveragetotaldistancetraveledby a
messageexceedsthedistancebetweensourceanddestination
nodeonly by a small constantvalue. Analysisandsimula-
tionson two Internettopologymodelspresentedin Section6
confirmthis.
Local route convergenceThepathsof two Pastrymessages
sentfrom nearbynodeswith identicalkeys tendto converge
at a nodenearthe sourcenodes,in the proximity space.To
seethis, observe that in eachconsecutive routing step, the
messagestravel exponentiallylargerdistancestowardsanex-
ponentiallyshrinkingsetof nodes.Thus,the probability of
a routeconvergenceincreasesin eachstep,even in the case
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whereearlier (smaller) routing stepshave moved the mes-
sagesfartherapart. This resulthassignificancefor caching
applicationslayeredon Pastry. Popularobjectsrequestedby
a nearbynodeandcachedby all nodesalong the route are
likely to befoundwhenanothernearbynoderequeststheob-
ject. Also, this propertyis exploited in Scribe[9] to achieve
low link stressin anapplicationlevel multicastsystem.
Locating the nearest replica If replicasof an object are
storedon ´ nodeswith adjacentnodeIds,Pastrymessagesre-
questingtheobjecthavea tendency to first reacha nodenear
theclientnode.To seethis,observethatPastrymessagesini-
tially take smallstepsin theproximity space,but largesteps
in thenodeIdspace.Applicationscanexploit thispropertyto
makesurethatclientrequestsfor anobjecttendto behandled
by a replicathatis neartheclient. Exploiting thispropertyis
application-specific,andis discussedin [8].

An analysisof thesepropertiesfollows in Section5. Sim-
ulation resultsthat confirmandquantify thesepropertieson
two Internettopologymodelsfollow in Section6.

4.1 Nodeaddition and failur e

Next, wepresentthePastrynodejoin protocolandshow how
this protocolmaintainstheproximity invariant.

First, recall from Section3 thata new node
­

mustcon-
tact an existing Pastrynode ® whenjoining the system. ®
thenroutesa messageusing

­
asthekey, andthenew node

obtainsthe . th row of its routingtablefrom thenodeencoun-
teredalongthepathfrom ® to

­
whosenodeIdmatches

­
in thefirst .µ)L$ digits. We will show that theproximity in-
variantholdson

­
’s resultingroutingtable,if node® is near­

, accordingto theproximity metric.
First, considerthe top row of

­
’s routing table,obtained

from node ® . Assumingthetriangulationinequalityholdsin
theproximity space,it is easyto seethattheentriesin thetop
row of ® ’s routing tablearealsocloseto

­
. Next, consider

the . th row of
­

’s routingtable,obtainedfrom thenode ®f¶
encounteredalongthepathfrom ® to

­
. By induction,this

nodeis Pastry’s approximationto thenodeclosestto ® that
matches

­
’snodeIdin thefirst .3)�$ digits. Therefore,if the

triangulationinequalityholds,wecanusethesameargument
to concludethat the entriesof the . th row of ® ¶ ’s routing
tableshouldbecloseto

­
.

At this point, we have shown that the proximity invariant
holdsin

­
’s routing table. To show that the nodejoin pro-

tocol maintainstheproximity invariantglobally in all Pastry
nodes,we must next show how the routing tablesof other
affectednodesare updatedto reflect

­
’s arrival. Once

­
hasinitialized its own routing table,it sendsthe . th row of
its routingtableto eachnodethatappearsasanentry in that
row. This servesbothto announceits presenceandto propa-
gateinformationaboutnodesthatjoinedpreviously. Eachof
thenodesthat receivesa row theninspectstheentriesin the
row, performsprobesto measureif

­
or oneof theentriesis

nearerthanthecorrespondingentry in its own routing table,
andupdatesits routingtableasappropriate.

To seethat this procedureis sufficient to restoretheprox-
imity invariantin all affectednodes,considerthat

­
andthe

nodesthatappearin row . of
­

’s routingtableform agroup
of "�# nearbynodeswhosenodeIdsmatchin thefirst . digits.
It is clearthatthesenodesneedto know of

­
’s arrival, since­

maydisplaceamoredistantnodein oneof thenode’srout-
ing tables.Conversely, anodewith identicalprefix in thefirst. digitsthatis notamemberof thisgroupis likely to bemore
distantfromthemembersof thegroup,andthereforefrom

­
;

thus,
­

’s arrival is not likely to affect its routing tableand,
with high probability, it doesnot needto beinformedof

­
’s

arrival.

Nodefailur e Recallthatfailedroutingtablesentriesarere-
pairedlazily, whenever a routingtableentry is usedto route
a message.Pastryroutesthe messageto anothernodewith
numericallyclosernodeId(lines 11-13 in Figure3). If the
downstreamnodehasa routing tableentry thatmatchesthe
next digit of themessage’s key, it automaticallyinforms the
upstreamnodeof thatentry.

We needto show that theentrysuppliedby this procedure
satisfiestheproximity invariant.If anumericallyclosernode
canbe found in the routing table,it mustbe an entry in the
samerow asthe failed node. If that nodesuppliesa substi-
tuteentry for the failednode,its expecteddistancefrom the
local nodeis thereforelow, sinceall threenodesarepart of
thesamegroupof nearbynodeswith identicalnodeIdprefix.
On theotherhand,if no replacementnodeis suppliedby the
downstreamnode,we trigger the routing tablemaintenance
task(describedin thenext section)to find a replacementen-
try. In eithercase,theproximity invariantis preserved.

4.2 Routing table maintenance

Theroutingtableentriesproducedby thenodejoin protocol
andtherepairmechanismsarenot guaranteedto betheclos-
est to the local node. Several factorscontribute to this, in-
cludingtheheuristicnatureof thenodejoin andrepairmech-
anismswith respectto locality. Also, many practicalproxim-
ity metricsdo not strictly satisfythetriangulationinequality
and may vary over time. However, limited imprecisionis
consistentwith theproximity invariant,andaswe will show
in Section6, it doesnothavea significantimpacton Pastry’s
locality properties.

However, one concernis that deviations could cascade,
leadingto a slow deteriorationof thelocality propertiesover
time. To prevent a deteriorationof the overall route qual-
ity, eachnoderunsa periodicroutingtablemaintenancetask
(e.g., every 20 minutes). The task performsthe following
procedurefor eachrow of the local node’s routing table. It
selectsa randomentry in the row, andrequestsfrom theas-
sociatednodea copy of that node’s correspondingrouting
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table row. Eachentry in that row is then comparedto the
correspondingentry in the local routing table. If they differ,
the nodeprobesthe distanceto both entriesandinstalls the
closestentryin its own routingtable.

The intuition behindthis maintenanceprocedureis to ex-
changerouting informationamonggroupsof nearbynodes
with identical nodeIdprefix. A nearbynodewith the ap-
propriateprefix mustbeknow to at leastonememberof the
group;theprocedureensuresthattheentiregroupwill even-
tually learnof the node,andadjusttheir routing tablesac-
cordingly.

Whenever a Pastrynodereplacesa routingtableentrybe-
causea closernodewasfound, the previousentry is kept in
a list of alternateentries(up to tensuchentriesaresaved in
the implementation).Whenthe primary entry fails, oneof
thealternatesis useduntil andunlessa closerentry is found
duringthenext periodicroutingtablemaintenance.

4.3 Locating a nearby node

Recallthat for thenodejoin algorithmto preserve theprox-
imity invariant,thestartingnode ® mustbecloseto thenew
node

­
, amongall live Pastrynodes.This begsthequestion

of how anewly joining nodecandetectanearbyPastrynode.
Oneway to achievethis is to performan“expandingring” IP
multicast,but thisassumestheavailability of IP multicast.In
Figure4, we presentanefficient algorithmby which a node
maydiscover a nearbyPastrynode,giventhat it hasknowl-
edgeof somePastrynodeat any location. Thus, a joining
nodeis only requiredto obtainknowledgeof any Pastrynode
throughout-of-bandmeans,asopposedto obtainingknowl-
edgeof a nearbynode. The algorithmexploits the property
thatlocationof thenodesin theseeds’leafsetshouldbeuni-
formly distributedoverthenetwork. Next, having discovered
theclosestleafsetmember, theroutingtabledistanceproper-
tiesareexploitedto moveexponentiallycloserto thelocation
of the joining node. This is achievedbottomup by picking
theclosestnodeat eachlevel andgettingthenext level from
it. Thelastphaserepeatstheprocessfor thetop level until no
moreprogressis made.

In this section,we have shown at an intuitive level why
thePastrynodejoin protocolpreservestheproximity invari-
ant,andhow Pastry’s locality propertiescanbederivedfrom
the proximity invariant. However, aspart of this argument,
we have relied on a few assumptionsthat do not generally
hold in theInternet.For instance,thetriangulationinequality
doesnot generallyhold for mostpracticalproximity metrics
in the Internet. Also, nodesarenot uniformly distributedin
the resultingproximity space.Therefore,it is necessaryto
confirm the robustnessof Pastry’s locality propertiesusing
simulationson Internettopologymodels.Resultsof simula-
tions basedtwo Internettopologymodelswill be presented
in Section6.

(1) discover(seed)
(2) nodes= getLeafSet(seed)
(3) forall nodein nodes
(4) nearNode= closerToMe(node,nearNode)
(5) depth= getMaxRoutingTableLevel(nearNode)
(6) while (depth · 0)
(7) nodes= getRoutingTable(nearNode,depth- -)
(8) forall nodein nodes
(9) nearNode= closerToMe(node,nearNode)
(10) endwhile
(11) do
(12) nodes= getRoutingTable(nearNode,0)
(13) currentClosest= nearNode
(14) forall nodein nodes
(15) nearNode= closerToMe(node,nearNode)
(16) while (currentClosest!= nearNode)
(17) returnnearNode

Figure4: Simplifiednearbynodediscovery algorithm. seed
is thePastrynodeinitially known to thejoining node.

5 Analysis

In thissection,wepresentanalyticalresultsfor Pastry’s rout-
ing properties.First, we analyzethedistribution of thenum-
berof routinghopstakenwhena Pastrymessagewith a ran-
domly chosenkey is sent from a randomly chosenPastry
node. This analysisthenforms the basisfor an analysisof
Pastry’s locality properties.Throughoutthis analysis,we as-
sumethateachPastrynodehasa perfectrouting table. That
is, aroutingtableentrymaybeemptyonly if nonodewith an
appropriatenodeIdprefix exists,andall routingtableentries
point to thenearestnode,accordingto theproximity metric,
with the appropriatenodeIdprefix. In practice,Pastrydoes
not guaranteeperfectrouting tables.Simulationresultspre-
sentedin Section6 show that the performancedegradation
dueto this inaccuracy is minimal. Dueto spaceconstraints,
the detailsof the analysisand the proofs are omitted here;
they areavaliableat http://dosa.ecn.purdue.edu:8080.

5.1 Route probability matrix

Theanalysisof thedistributionof thenumberof routinghops
is basedon the statisticalpopulationof the nodeIdspace.
Sincetheassignmentof nodeIdsis assumedto berandomly
uniform,thispopulationcanbecapturedby thebinomialdis-
tribution(see,for example,[1]). For instance,thedistribution
of thenumberof nodeswith agivenvalueof themostsignif-
icantnodeIddigit, outof

	
nodes,is givenby ���c´b¸ 	 ¬H$«&�"�# � .

Recallfrom Figure3 thatat eachnode,a messagecanbe
forwardedusingoneof threebranchesin theforwardingpro-
cedure.In case¹»º , themessageis forwardedusingthe leaf
set § (line 3); in case¹»¼ usingtherouting table ¢ (line 8);
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andin case¹»½ usinga nodein §�¾0¢ (lines11-13).We for-
mally definetheprobabilitiesof takingthesebranchesaswell
asof two specialcasesin thefollowing.

Definition 1 Let ¿FÀ��'��� ªy¬���¬ 	 ¬�¹�Á �
denotetheprobability of

taking branch ¹»Á�¬ ­-Â¤Ã ®Ä¬�ÅÆ¬�Ç�È , at the � ªµ/É$ � th hop in
routinga messagewith randomkey, startingfroma noderan-
domlychosenfrom

	
nodes,with a leafsetof size� . Further-

more, wedefine¿FÀ��'��� ªy¬���¬ 	 ¬�¹ËÊº �
astheprobability that the

nodeencountered after the ª -th hop is alreadythe numeri-
cally closestnodeto the message, and thusthe routing ter-
minates,anddefine¿ÌÀ��'���cªÍ¬��i¬ 	 ¬�¹ËÊ¼ �

astheprobability that
the nodeencountered after the ª -th hop alreadyshares the� ª3/L$ � digitswith thekey, thusskippingthe � ª3/L$ � th hop.

We denote ¿FÀ«�'�'� ªy¬��i¬ 	 ¬�¹»Á � ¬�ª ÂÏÎ Ð ¬Ñ$«"'%
&��0)Ò$vÓt¬ ­ÔÂÃ ®Ä¬�®qÊ�¬�ÅÆ¬�Å�Êc¬�Ç�È astheprobability matrix of Pastryrouting.
The following Lemmagivesthe building block for deriving
thefull probabilitymatrix asa functionof

	
and � .

Lemma 1 Assumebranch ¹�¼ hasbeentakenduringthefirstª hopsin routing a randommessage Õ , i.e. themessage Õ
is at an intermediatenode

­
which shares the first ª dig-

its with Õ . Let Ö be the total numberof randomuniformly
distributednodeIdsthat share thefirst ª digits with Õ . The
probabilitiesin takingdifferentpathsat the �cªÄ/L$ � th hopis×ØØØØ

Ù
Ú�ÛÑÜHÝ xd�F������Þ*��ßbàÍ�Ú�ÛÑÜHÝ xd�F������Þ*��ßJáà �Ú�ÛÑÜHÝ xd�F������Þ*��ß â»�Ú�ÛÑÜHÝ xd�F������Þ*��ß áâ �Ú�ÛÑÜHÝ xd�F������Þ*��ß ã��

ä�åååå
æ � � � { �ç

��èÌé
êçëtì è�é

Ý xîí é�ï Þ*�,ð�Ññ � ò
ê { ëtìçë è�é

Ý xîí ï Þó��í é � j� ñ � ð � ò Ú�ÛHÜÑÝ Ú � Ý�ô xîí���í é �iÞó��í é ��í��i�F�����
where ¿FÀ«�'� ¿FE~�oa'�öõ ¥ ¬cõ«÷H¬cõ�ø'¬�ªÍ¬�� � calculatesthefiveprobabil-
itiesassumingthereare õ ¥ ¬cõ«÷Ñ¬cõ�ø nodeIdsthatsharedthefirstª digitswith Õ , but whose� ª3/L$ � th digitsare smallerthan,
equalto, andlarger thanthatof Õ , respectively.

Sincetherandomlyuniformly distributednodeIdsthatfall
in a particularsegmentof the namespacecontaininga fixed
prefix of ª digits follow the binomial distribution, the ª th
row of theprobabilitymatrix canbecalculatedby summing
over all possiblenodeIddistributionsin that segmentof the
namespacetheprobabilityof eachdistribution multiplied by
its correspondingprobabilityvectorgivenby Lemma1. Fig-
ure5 plots theprobabilitiesof takingbranches¹�º , ¹»¼ , and¹ ½ at eachactualhop(i.e. aftertheadjustmentof collapsing
skippedhops)of Pastryroutingfor

	 I1C Ð(Ð�Ð�Ð
, with ��I1ù("

and ��IúK . It shows that the ����� ��h � 	!�
-th hop is dominated

by ¹ º hopswhile earlierhopsaredominatedby ¹ ¼ hops.
The above probability matrix canbe usedto derive the dis-
tribution of thenumbersof routinghopsin routinga random
message.Figure6 plotsthisdistributionfor

	 IûC Ð�Ð(Ð�Ð
with�yILù
" and �,IûK . Theprobabilitymatrix canalsobeusedto
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derive theexpectednumberof routinghopsin Pastryrouting
accordingto thefollowing theorem.

Theorem1 Lettheexpectednumberof additionalhopsafter
taking ¹»½ for the first time, at the ª th hop, be denotedasÇ
	�� �cªÍ¬��i¬ 	 ¬�¹»½ �

. Theexpectednumberof routing hopsin
routing a message with randomkey Õ starting from a node
randomlychosenfromthe

	
nodesis

� �t�i� ñ { �ç

 èÌé

Ú�ÛÑÜHÝ xd�F������ý3�ißbàÍ� � Ú�ÛÑÜHÝ xd�F��� ��ý3��ß áà ���
Ú�ÛHÜÑÝ xd�Ì�i� �iý3�ißbâ»� � Ú�ÛÑÜHÝ xd�F��� ��ý3��ß áâ ���Ú
ÛHÜÑÝ xd�F��� �iý3�iß ã ������� � xd�F�i� �iý3��ß ã �bò Ú�ÛÑÜÑÝ xd�F�t� ��ý3�iß ã �

5.2 Expectedrouting distance

Next, we analyzetheexpecteddistancea messagetravels in
theproximity space,while it is beingroutedthroughPastry.
To maketheanalysistractable,it isassumedthatthelocations
of the Pastry nodesare randomuniformly distributed over
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the surfaceof a sphere,and that the proximity metric used
by Pastry equalsthe geographicdistancebetweenpairs of
Pastrynodeson thesphere.Theuniformdistributionof node
locationsandtheuseof geographicdistanceastheproximity
metricareclearlynot realistic. In Section6 we will present
two setsof simulationresults,one for conditionsidentical
to thoseassumedin the analysis,andonebasedon Internet
topologymodels.A comparisonof the resultsindicatesthat
theimpactof ourassumptionson theresultsis limited.

The following Lemmagivesthe averagedistancein each
hop traveled by a messagewith a randomkey sentfrom a
randomstartingnode,asa function of the hop numberand
thehoptype.

Lemma 2 (1) In routingmessage Õ , after ª ¹ ¼ hops,if ¢ ����
is notempty, theexpectedªÌ��¿ � ¦i©��v� ªy¬�¢3¬�¹ ¼ �

is ¢¤av�'© ¨ � �i$_)� ��� ������ !���" �
.

(2) In routing message Õ , if path ¹ º is taken at any given
hop,thehopdistanceªF��¿ � ¦i©#�v�cªÍ¬�¢3¬�¹ º �

is $�% &� .
(3) In routing message Õ , after ª hops, if path ¹�½ is
taken,thehopdistanceªF��¿ � ¦i©��v� ªy¬�¢3¬�¹»½ �

is ªF��¿ � ¦i©��v� ª*)$�¬�¢3¬�¹»¼ �
, which with high probability is followedby a hop

takenvia ¹ º , i.e. with distance $�% &� .

The above distanceªF��¿ � ¦�©��v�cªÍ¬�¢�¬�¹ ¼ �
comesfrom the

density argument. Assuming nodeIdsare uniformly dis-
tributedover the surfaceof the sphere,the averagedistance
of the next ¹»¼ hop is the radiusof a circle that containson
averageonenodeId(i.e. the nearestone)thatshare �cª�/ $ �
digitswith Õ .

Given the vector of the probabilitiesof taking branches¹ º , ¹ ¼ , and ¹ ½ at theactualª th hop(e.g.Figure5), andthe
above vectorof per-hopdistancefor the threetypesof hops
at the ª th hop, the averagedistanceof the ª th actualhop is
simply the dot-productof the two vectors,i.e. the weighted
sum of the hop distancesby the probabilitiesthat they are
taken. Theseresultsarepresentedin the next sectionalong
with simulationresults.

5.3 Local route convergence

Next, weanalyzePastry’srouteconvergencepropertieswhen
two randomPastrynodessenda messagewith thesameran-
domly chosenkey. Specifically, we areinterestedin thedis-
tancethe messagestravel in the proximity spaceuntil the
point wheretheir routesconverge, asa function of the dis-
tancebetweenthestartingnodesin theproximity space.

To simplify the analysis,we considerthreescenarios.In
the worst-casescenario,it is assumedthat at eachrouting
hopprior to thepoint wheretheir routesconverge,the mes-
sagestravel in oppositedirectionsin theproximity space.In
the average-casescenario,it is assumedthat prior to con-
vergence,the messagestravel suchthat their distancein the
proximity spacedoesnot change.In the bestcasescenario,

themessagestravel towardseachotherin theproximity space
prior to theirconvergence.

Theorem2 Let Ç3$ and ÇË" be the two starting nodeson a
sphere of radius ¢ from which messageswith an identical,
randomkey are beingrouted. Let the distancebetweenÇ3$
and ÇË" be

� Ð
. Thentheexpecteddistancethat thetwo mes-

sageswill travelbefore their pathsmerge is

j�l m�r�x�j � �i�,�Í� } ')()* ��+çë è�é
�-, ë.
� è�é x ð � Ú�ÛHÜÑÝ � Ü�Ú x�l��ij � ���,���t� Ü�Ú j�lcm�r�xîí«���,�

where ¿ÌÀ��'� ªF��¿��öõ(¬ � Ð ¬�¢ � I /10 ��243 � £6547 098;: &=< : � 8;: &=</?>�@BA)C;DFEHGB0 �I243 � £65J7 0K8;: &=< : &=< ,� õ I � Ð / "�L�MON�P 8NBQ=R ªÌ��¿ � ¦i©��v� õ(¬�¢ �
in the worst case,

or
� õ I � Ð

in the average case, or
� õ Iþ2�E
G�� Ð ¬ � Ð )"SLTMUN�P 8NBQVR ªF��¿ � ¦i©��v� õ(¬�¢ ���

in the best case, respectively,W �dÀ�¬ � ¬�¢ �
denotesthe intersectingareaof two circlesof ra-

dius À centeredat twopointsona sphereof radius ¢ thatare
a distanceof

� �Ï"�À apart, and
W
54X ø�Y�ZÑ÷4[ �dÀ�¬�¢ �

denotesthe
surfaceareaof a circleof radius À on a sphereof radius ¢ .

Figure7 plots the averagedistancetraveledby two mes-
sagessentfrom two randomPastrynodeswith thesameran-
domkey, asa functionof thedistancebetweenthetwo start-
ing nodes.Resultsareshown for the“worstcase”,“average
case”,and“bestcase”analysis.
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6 Experimental results

In this section,we presentexperimentalresultsquantifying
Pastry’s locality properties.All resultswereobtainedusinga
Pastryimplementationrunningontopof anetwork simulator.
ThePastryparametersweresetto �ËIóK andthe leafsetsize��I1ù(" . Unlessotherwisestated,resultswhereobtainedwith
a simulatedPastryoverlaynetwork of 60,000nodes.
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6.1 Network topologies

Threesimulatednetwork topologieswereusedin theexper-
iments.The “Sphere”topologycorrespondsto the topology
assumedin the analysisof Section5. Nodesare placedat
uniformly randomlocationson the surfaceof a spherewith
radius1000.Thedistancemetric is basedon thetopological
distancebetweentwo nodeson thesphere’ssurface.Results
producedwith thistopologymodelshouldcorrespondclosely
to theanalysis,andit wasusedprimarily to validatethesim-
ulation environment. However, the spheretopology is not
realistic,becauseit assumesa uniform randomdistribution
of nodeson the Sphere’s surface,andits proximity spaceis
very regularandstrictly satisfiesthetriangulationinequality.

A secondtopologywasgeneratedusingtheGeorgia Tech
transit-stubnetwork topologymodel[13]. Theround-tripde-
lay (RTT) betweentwo nodes,asprovided by the topology
graphgenerator, is usedas the proximity metric with this
topology. We usea topologywith 5050nodesin the core,
whereaLAN with anaverageof 100nodesisattachedtoeach
corenode.Out of theresulting505,000LAN nodes,60,000
randomlychosennodesform a Pastryoverlay network. As
in therealInternet,thetriangulationinequalitydoesnothold
for RTTsamongnodesin thetopologymodel.

Finally, we usedtheMercatortopologyandroutingmod-
els [11]. The topologymodelcontains102,639routersand
it wasobtainedfrom realmeasurementsof theInternetusing
theMercatorprogram[4]. Theauthorsof [11] usedrealdata
andsomesimpleheuristicsto assignanautonomoussystem
to eachrouter. The resultingAS overlay has2,662nodes.
Routing is performedhierarchicallyas in the Internet. A
routefollowstheshortestpathin theAS overlaybetweenthe
AS of the sourceandthe AS of the destination.The routes
within eachAS follow theshortestpathto arouterin thenext
AS of theAS overlaypath.

We built a Pastryoverlaywith 60,000nodeson this topol-
ogy by picking a router for eachnode randomlyand uni-
formly, andattachingthe nodedirectly to the routerwith a
LAN link. Sincethetopologyis not annotatedwith delayin-
formation, the numberof routing hopsin the topologywas
usedasthe proximity metric for Pastry. We countthe LAN
hopswhenreportingthe lengthof the Pastryroutes.This is
conservativebecausethecostof thesehopsis usuallynegligi-
bleandPastry’soverheadwouldbelower if wedid notcount
LAN hops.

6.2 Pastry routing hopsand distanceratio

In thefirst experiment,200,000lookupmessagesarerouted
usingPastry from randomlychosennodes,usinga random
key. Figure8 shows the numberof Pastryroutinghopsand
the distanceratio for the spheretopology. Distanceratio is
definedastheratioof thedistancetraversedby aPastrymes-
sageto thedistancebetweenits sourceanddestinationnodes,

measuredin termsof theproximity metric. Thedistancera-
tio canbeinterpretedasthepenalty, expressedin termsof the
proximity metric,associatedwith routingamessagesthrough
Pastryinsteadof sendingthemessagedirectly in theInternet.

Four setsof resultsareshown. “Expected”representsthe
resultsof the analysisin Section5. “Normal routing table”
shows the correspondingexperimentalresultswith Pastry.
“Perfect routing table” shows resultsof experimentswith a
versionof Pastrythatusesperfectroutingtable.Thatis, each
entryin theroutingtableis guaranteedto point to thenearest
nodewith theappropriatenodeIdprefix. Finally, “No local-
ity” shows resultswith a versionof Pastrywherethelocality
heuristicshavebeendisabled.
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Figure8: Numberof routinghopsanddistanceratio, sphere
topology.

All experimentalresultscorrespondwell with the results
of the analysis,thus validating the experimentalapparatus.
As expected,theexpectednumberof routinghopsis slightly
below ����� ��h C Ð ¬ Ð(Ð�Ð I ù�] ^�_ and the distanceratio is small.
Thereportedhopcountsarevirtually independentof thenet-
work topology, thereforewepresentthemonly for thesphere
topology.

The distanceratio obtainedwith perfectrouting tablesis
only marginally betterthan that obtainedwith the real Pas-
try protocol. This confirmsthat the nodejoin protocolpro-
ducesroutingtablesof highquality, i.e.,entriesreferto nodes
thatarenearlytheclosestamongnodeswith theappropriate
nodeIdprefix. Finally, thedistanceratioobtainedwith thelo-
cality heuristicsdisabledis significantlyworse.This speaks
both to the importanceof proximity basedrouting, and the
effectivenessof Pastry’sheuristics.

6.3 Routing distance

Figure9 shows thedistancemessagestravel in eachconsec-
utive routing hops. The resultsconfirm the exponentialin-
creasein theexpecteddistanceof consecutivehopsup to the
fourth hops,aspredictedby theanalysis.Note that thefifth
hopis only takenby atiny fraction(0.004%)of themessages.
Moreover, in theabsenceof the locality heuristics,theaver-
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agedistancetraveledin eachhopis constantandcorresponds
to the averagedistancebetweennodes( $«D`_�$ÆI �-acb!À � &�" ,
wherer is theradiusof thesphere).

0

100

200

300

400

500

600

1 2 3 4 5

Hop Number

P
er

-h
o

p
 d

is
ta

n
ce

Normal Routing Tables

Perfect Routing Tables

No locality

Figure10: Distancetraversedperhop,GATechtopology.

Figures10 and11 show the sameresultsfor the GATech
and the Mercatortopologies,respectively. Due to the non-
uniformdistributionof nodesandthemorecomplex proxim-
ity spacein thesetopologies,the expecteddistancein each
consecutive routing stepno longer increasesexponentially,
but it still increasesmonotonically. Moreover, thenodejoin
algorithm continuesto producerouting tablesthat refer to
nearbynodes,as indicatedby the modestdifferencein hop
distanceto theperfectroutingtablesin thefirst threehops.

The proximity metric usedwith the Mercator topology
makesPastry’s locality propertiesappearin an unfavorable
light. Sincethe numberof nodeswithin d IP routing hops
increasesvery rapidly with d , thereare very few “nearby”
Pastrynodes.Observe that the averagedistancetraveledin
the first routing hop is almosthalf of the averagedistance
betweennodes(i.e., it takesalmosthalf theaveragedistance
betweennodesto reachabout16 other Pastry nodes). As
a result, Pastry messagestraverserelatively long distances
in the first few hops,which leadsto a relatively high dis-
tanceratio. Nevertheless,we choseto includetheseresults
to demonstratethatPastry’s locality propertiesaregoodeven
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Figure11: Distancetraversedperhop,Mercatortopology.

underadverseconditions.
Figures12, 13 and 14 show rasterplots of the distance

messagestravel in Pastry, asa function of the distancebe-
tweenthesourceanddestinationnodes,for eachof thethree
topologies,respectively. Messageswere sent from 20,000
randomlychosensourcenodeswith randomkeys in this ex-
periment.Themeandistanceratio is shown in eachgraphas
a solid line.

The resultsshow that the distribution of the distancera-
tio is relatively tight aroundthemean.Not surprisingly, the
spheretopologyyieldsthebestresults,dueto its uniformdis-
tribution of nodesandthe geometryof its proximity space.
However, thefar morerealisticGATechtopologyyieldsstill
very goodresults,with a meandistanceratio of 1.59,a max-
imal distanceratioof about8.5,anddistribution thatis fairly
tight aroundthe mean. Even the least favorableMercator
topologyyields acceptableresults,with a meandistancera-
tion of 2.2anda maximumof about6.5.
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Figure12: Distancetraversedversusdistancebetweensource
anddestination,spheretopology.

6.4 Local route convergence

The next experimentevaluatesthe local route convergence
propertyof Pastry. In theexperiment,10nodeswereselected
randomly, andthenfor eachof thesenodes,6,000othernodes
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Figure13: Distancetraversedversusdistancebetweensource
anddestination,GATechtopology.
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Figure14: Distancetraversedversusdistancebetweensource
anddestination,Mercatortopology.

werechosensuchthatthetopologicaldistancebetweeneach
pair provides good coverageof the rangeof possibledis-
tances.Then,100 randomkeys werechosenandmessages
whereroutedvia Pastryfrom eachof thetwo nodesin apair,
with a givenkey.

To evaluatehow early the pathsconvergence,we usethe
metric egf4hf4h�ikjFlmon f4hf4hpiqj)rm`spt?u where, v#w is thedistancetraveled
from the nodewherethe two pathsconvergeto the destina-
tion node,and xIyf and x�zf arethedistancestraveledfrom each
sourcenodeto thenodewherethepathsconverge.Themet-
ric expressesthe averagefraction of the lengthof the paths
traveledby thetwo messagesthatwasshared.Note that the
metric is zero when the pathsconverge in the destination.
Figures15, 16 and17 show the averageof the convergence
metricsversusthe distancebetweenthe two sourcenodes.
As expected,whenthedistancebetweenthesourcenodesis
small, the pathsare likely to converge quickly. This result
is importantfor applicationsthatperformcaching,or rely on
efficientmulticasttrees[8, 9].

Figure 18 shows the averagedistancetraveled from the
sourcenodesto thenodewherethepathsconverge,asafunc-
tion of thedistancebetweenthesourcesnodes.Notethatthe
convergencenodecouldbethedestination.We includedthis
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Figure15: Convergencemetric versusthe distancebetween
thesourcenodes,spheretopology.
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Figure16: Convergencemetric versusdistancebetweenthe
sourcenodes,GATechtopology.

graphfor thespheretopology, asthisallowsadirectcompar-
ison with the resultsof the analysis(Figure7). The results
matchwell.

6.5 Overheadof nodejoin protocol

Next, wemeasuretheoverheadincurredby thenodejoin pro-
tocolto maintaintheproximity invariantin theroutingtables.
We quantifythis overheadin termsof thenumberof probes,
whereeachprobecorrespondsto thecommunicationrequired
to measurethe distance,accordingto the proximity metric,
amongtwo nodes. Of course,in our simulatednetwork, a
probesimply involveslookingup thecorrespondingdistance
accordingto thetopologymodel.However, in arealnetwork,
probingwould likely requireat leasttwo messageexchanges.
Thenumberof probesis thereforea meaningfulmeasureof
theoverheadrequiredto maintaintheproximity invariant.

Figure19 shows themaximum,meanandminimumnum-
ber of probesperformedby a nodejoining the Pastry net-
work. The resultswere generatedfor Pastry networks of
between1,000and60,000nodes. In eachcase,the probes
performedby the last ten nodesthat joined the Pastry net-
work wererecorded,which arethe nodeslikely to perform
the mostprobesgiven the sizeof the network at that stage.
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Figure17: Convergencemetric versusdistancebetweenthe
sourcenodes,Mercatortopology.
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Figure18: Distanceto nodewheremessagepathsconverge,
versusthe distancebetweenthe two sourcenodes,sphere
topology.

Figure 20 shows the correspondingnumberof probesper-
formedby nodesotherthanthejoining nodeduringa join.

It is assumedhere that oncea nodehasprobedanother
node,it storestheresultanddoesnot probeagain.Thenum-
ber of nodescontactedduring the joining of a new nodeis
e u`{�|~}�sF����� z��F� nS� , whereN is thenumberof Pastrynodes.
This follows from theexpectednumberof nodesin therout-
ing table,andthe sizeof the leaf set. Although every node
that appearsin the joining node’s routing table receives in-
formationaboutall theentriesin thesamerow of thejoining
node’s routing table,it is very likely that the receiving node
alreadyknows many of thesenodes,andthustheir distance.
As a result,thenumberof probesperformedpernodeis low
(on averagelessthan2). This meansthat the total number
of nodesprobedis low, andtheprobingis distributedover a
large numberof nodes. The resultswerevirtually identical
for theGATechandtheMercatortopologies.

6.6 Nodefailur e

In the next experiment,we evaluatethe nodefailure recov-
ery protocol(Section4.1) andtheroutingtablemaintenance
(Section4.2). Recall that leaf set repair is instantaneous,
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Figure19: Numberof probesperformedby a newly joining
nodefor Pastrynetworks between1,000and60,000nodes,
spheretopology.
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Figure20: Numberof probesper-join performedby nodes
other than the joining node for Pastry networks between
1,000and60,000nodes,spheretopology.

failedrouting tableentriesarerepairedlazily uponnext use,
anda periodicrouting tablemaintenancetask runsperiodi-
cally (every20mins)to exchangeinformationwith randomly
selectedpeers.

In the experiment,a 50,000nodePastry overlay is cre-
atedbasedon the GATechtopology, and200,000messages
from randomsourceswith randomkeys are routed. Then,
20,000randomlyselectednodesaremadeto fail simultane-
ously, simulatingconditionsthatmight occurin theeventof
a network partition. Prior to the next periodic routing ta-
ble maintenance,a new setof 200,000randommessageare
routed.After anotherperiodicroutingtablemaintenance,an-
othersetof 200,000randommessagesarerouted.

Figure21 showsboththenumberof hopsandthedistance
ratio at variousstagesin this experiment.Shown aretheav-
eragenumberof routinghopsandtheaveragedistanceratio,
for 200,000messageseachbeforethe failure, after the fail-
ure,afterthefirst andafterthesecondroundof routingtable
maintenance.The“no failure” resultis includedfor compar-
ison andcorrespondsto a 30,000nodePastryoverlay with
no failures.Moreover, to isolatetheeffectsof theroutingta-
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blemaintenance,wegiveresultswith andwithouttherouting
tablemaintenanceenabled.
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Figure21: Routinghopsanddistanceratio for a50,000node
Pastryoverlaywhen20,000nodessimultaneouslyfail, GAT-
echtopology.

During the first 200,000messagetransmissionsafter the
massivenodefailure,theaveragenumberof hopsandaverage
distanceratio increaseonly mildly (from 3.54to 4.17and1.6
to 1.86, respectively). This demonstratesthe robustnessof
Pastryin thefaceof massivenodefailures.After eachround,
theresultsimproveandapproachthosebeforethefailureafter
two rounds.

With the routing table maintenancedisabled, both the
numberof hops and the distanceratio do not recover as
quickly. Considerthat theroutingtablerepairmechanismis
lazyandonly repairsentriesthatareactuallyused.Moreover,
a repairgenerallyinvolvesanextra routinghop,becausethe
messageis routedto a numericallyclosernode(third branch
of theroutingalgorithm).Eachconsecutiveburstof 200,000
messagesis likely to encounterdifferentroutingtableentries
that have not yet beenfixed (about95,000entrieswere re-
pairedduringeachbursts).Theperiodicroutingtablemain-
tenance,on the otherhand,replacesfailed entriesthat have
not yet beenusedaspart of its routine. It is intuitive to see
why thedistanceratio recoversmoreslowly without routing
tablemaintenance.Thereplacemententryentryprovidedby
the repairmechanismsis generallyrelatively close,but not
necessarilyamongthe closest. The periodic routing table
maintenanceperformsprobingandis likely to replacesuch
anentrywith abetterone.

We also measuredthe cost of the periodic routing table
maintenance,in termsof network probesto determinethe
distanceof nodes.On average,lessthan20 nodesarebeing
probedeachtimeanodeperformsroutingtablemaintenance,
with a maximumof 82 probes.Sincetheroutingtablemain-
tenanceis performedevery 20 minutesand the probesare
likely to target differentnodes,this overheadis not signifi-
cant. However, whenmany largeoverlaynetworks perform
probingin the Internet,therecanbe a significantburdenon
the network. For this reason,several project are currently

working on a genericmeasurementinfrastructurefor theIn-
ternet.Weexpectthatthiswork will provideasolutionto this
problemin thelong term.

6.7 Load balance

Next, we considerhow maintainingthe proximity invariant
in the routing tablesaffectsload balancein the Pastryrout-
ing fabric. In thesimplePastryalgorithmwithout thelocality
heuristics,or in protocolslike Chordthatdon’t considernet-
work proximity, the“indegree”of anode,i.e., thenumberof
routingtableentriesreferringto a any givennode,shouldbe
balancedacrossall nodes.This is a desirableproperty, asit
tendsto balancemessageforwardingloadacrossall partici-
patingnodesin theoverlay.

Whenrouting tablesentriesare initialized to refer to the
nearestnodewith the appropriateprefix, this propertymay
becompromised,becausethedistributionof indegreesis now
influencedby the structureof the underlyingphysicalnet-
work topology. Thus,thereis an inherenttradeoff between
proximity basedroutingandloadbalancein theroutingfab-
ric. Thepurposeof thenext experimentis to quantifythede-
greeof imbalancein indegreesof nodes,causedby theprox-
imity invariant.

Figure22 shows the cumulative distribution of indegrees
for a60,000nodePastryoverlay, basedontheGATechtopol-
ogy. As expected,theresultsshow thatthedistributionof in-
degreesis not perfectlybalanced.Theresultsalsoshow that
theimbalanceis mostsignificantat thetop levelsof therout-
ing table(not shown in the graph),andthat the distribution
hasathin tail. Thissuggeststhatit is appropriateto dealwith
thesepotentialhotspotsreactively ratherthanproactively. If
one of the nodeswith a high indegreebecomesa hotspot,
whichwill dependon theworkload,it cansendbackoff mes-
sages.Thenodesthatreceivesuchabackoff messagefind an
alternativenodefor thesameslotusingthesametechniqueas
if thenodewasfaulty. Sincethemostsignificantimbalance
occursat thetop levelsof theroutingtable,changingrouting
tableentriesto point to analternative nodewill not increase
the delay penaltysignificantly. Thereare many alternative
nodesthat canfill out theseslotsandthe distancetraversed
in thefirst hopsaccountsfor a smallfractionof thetotal dis-
tancetraversed.We concludethat imbalancein the routing
fabric asa resultof the proximity invariantdoesnot appear
to bea significantproblem.

6.8 Discovering a nearby seednode

Finally, we evaluatethe discovery algorithm usedto find a
nearbyPastry node, presentedin Section4.3. In eachof
1,000trials, we chosea pair of nodesrandomlyamongthe
60,000Pastrynodes.Onenodein thepair is consideredthe
joining nodethatwishesto locatea nearbyPastrynode,the
otheris treatedastheseedPastrynodeknown to the joining
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Figure 22: Indegree distribution of 60,000 Pastry nodes,
GATechtopology.

Exact Average Average Number
closest Distance RT0 Distance Probes

Sphere 95.3% 11.0 37.1 157
GATech 83.7% 82.1 34.1 258
Mercator 32.1% 2.6 6.0 296

Table1: Resultsfor theclosestnodediscoveryalgorithm.

node.Usingthisseednode,thenodediscoveryalgorithmwas
usedto discover a nodenearthe joining node,accordingto
theproximity metric. Table1 shows theresultsfor thethree
differenttopologies.The first columnshows the numberof
timesthealgorithmproducedtheclosestexisting node.The
secondcolumnshows theaveragedistance,accordingto the
proximity metric,of thenodeproducedby thealgorithm,in
thecaseswherethenearestnodewasnot found.For compar-
ison,thethird columnshows theaveragedistancebetweena
nodeandits row zerorouting tableentries. The fourth col-
umnshows thenumberof probesperformedpertrial.

In thespheretopology,over95%of thefoundnodesarethe
closest.Whentheclosestis not found, the averagedistance
to the found nodeis significantly lessthan the averagedis-
tanceto theentriesin thefirst level of theroutingtable.More
interestingly, this is alsotruefor theMercatortopology, even
thoughthenumberof timestheclosestnodewasfoundis low
with this topology. TheGATechresultis interesting,in that
thefractionof caseswherethenearestnodewasfoundis very
high (almost84%),but theaveragedistanceof theproduces
nodein the caseswherethe closestnodewas not found is
high. The reasonis that the highly regular structureof this
topologycausesthealgorithmto sometimesgetinto a “local
minimum”, by gettingtrappedin a nearbynetwork. Overall,
thealgorithmfor locatinga nearbynodeis effective. Results
show that thealgorithmsallows newly joining nodesto effi-
ciently discovera nearbynodein theexisting Pastryoverlay.

7 Conclusion

This paperpresentsan analysisand an experimentaleval-
uation of the network locality propertiesof a p2p overlay
network, Pastry. Analysisshows thatgoodnetwork locality
propertiescan be achieved with very low overheadin syn-
theticnetwork topologies.A refinedprotocolfor nodejoin-
ing andnodefailurerecovery significantlyreducestheover-
headof maintaininga topology-awareoverlay. Simulations
on two different Internet topology modelsthen show that
thesepropertieshold also in morerealisticnetwork topolo-
gies. We concludethatexploiting network proximity canbe
accomplishedeffectively and with low overheadin a self-
organizingpeer-to-peeroverlaynetwork.
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