Controlling the Cost of Reliability in Peer-to-Peer Overlays

Ratul Mahgjan'

tUniversity of Washington
Seattle, WA

Abstract—Structured peer-to-peer overlay networks pro-
vide a useful substrate for building distributed applications
but there are general concerns over the cost of maintain-
ing these overlays. The current approach is to configure the
overlays statically and conservatively to achieve the desired
reliability even under uncommon adverse conditions. This
results in high cost in the common case, or poor reliability
in worse than expected conditions. We analyze the cost of
overlay maintenance in realistic dynamic environments and
design novel techniques to reduce this cost by adapting to
the operating conditions. With our techniques, the concerns
over the overlay maintenance cost are no longer warranted.
Simulations using real traces show that they enable high re-
liability and performance even in very adverse conditions
with low maintenance cost.

I. INTRODUCTION

Structured peer-to-peer (p2p) overlay networks (e.g., [6,
12, 7, 14]) are a useful substrate for building distributed
applications because they are scalable, self-organizing and
reliable. They provide a hash table like primitive to route
messages using their keys. These messages are routed
in a small number of hops using small per-node rout-
ing state. The overlays update routing state automatically
when nodes join or leave, and can route messages correctly
even when a large fraction of the nodes crash or the net-
work partitions.

But scalability, self-organization, and reliability have a
cost; nodes must consume network bandwidth to main-
tain routing state. There is a general concern over this
cost [10, 11] but there has been little work studying it. The
current approach is to configure the overlays statically and
conservatively to achieve the desired reliability and per-
formance even under uncommon adverse conditions. This
results in high cost in the common case, or poor reliability
in worse than expected conditions.

This paper studies the cost of overlay maintenance in re-
alistic environments where nodes join and leave the system
continuously. We derive analytic models for routing relia-
bility and maintenance cost in these dynamic conditions.

This work was done while Ratul

ing Microsoft Research. Emails:
{mcastro,antr } @microsoft.com

Mahagjan was visit-
ratul @cs.washington.edu,

Miguel Castrot

Antony Rowstron?

iMicrosoft Research
Cambridge, UK

We also present novel techniques that reduce the mainte-
nance cost by observing and adapting to the environment.
First, we describe a self-tuning mechanism that minimizes
the overlay maintenance cost given a performance or relia-
bility target. The current mechanism minimizes the probe
rate for fault detection given a target message loss rate. It
estimates both the failure rate and the size of the overlay,
and uses the analytic models to compute the required probe
rate. Second, we present mechanisms to effectively and ef-
ficiently deal with uncommon conditions such as network
partitions and extremely high failure rates. These mecha-
nisms enable the use of less conservative overlay configu-
rations with lower maintenance cost. Though presented in
the context of Pastry [7, 2], our results and techniques can
be directly applied to other overlays.

Our results show that concerns over the maintenance
cost in structured p2p overlays are not warranted anymore.
It is possible to achieve high reliability and performance
even in adverse conditions with low maintenance cost. In
simulations with a corporate network trace [1], over 99%
of the messages were routed efficiently while control traf-
fic was under 0.2 messages per second per node. With
a much more dynamic Gnutella trace [10], similar perfor-
mance levels were achieved with a maintenance cost below
one message per second per node most of the time.

The remainder of the paper is organized as follows.
We provide an overview of Pastry and our environmen-
tal model in Section Il, and present analytic reliability and
cost models in Section I1l. Techniques to reduce mainte-
nance cost appear in Section IV. In Section V we discuss
how our techniques can be generalized for other structured
p2p overlays. Related work is in Section VI, and conclu-
sions in Section VII.

1. BACKGROUND

This section starts with a brief overview of Pastry with
a focus on aspects relevant to this paper. Then, it presents
our environment model.

PASTRY Nodes and objects are assigned random iden-
tifiers from a large sparse 128-bit id space. These identi-
fiers are called nodelds and keys, respectively. Pastry pro-
vides a primitive to send a message to a key that routes

the message to the live node whose nodeld is numerically
closest to the key in the id space.

The routing state maintained by each node consists of
the leaf set and the routing table. Each entry in the rout-
ing state contains the nodeld and IP address of a node. The
leaf set contains the [/2 neighboring nodelds on either side
of the local node’s nodeld in the id space. In the routing
table, nodelds and keys are interpreted as unsigned inte-
gers in base 2° (where b is a parameter with typical value
4). The routing table is a matrix with 128 /b rows and 2°
columns. The entry in row r and column ¢ of the routing
table contains a nodeld that shares the first digits with the
local node’s nodeld, and has the (r + 1)th digit equal to c.
If there is no such nodeld or the local nodeld satisfies this
constraint, the entry is left empty. On average only logy, N
rows have non-empty entries.

Pastry routes a message to a key using no more than
logos N hops on average. At each hop, the local node nor-
mally forwards the message to a node whose nodeld shares
with the key a prefix that is at least one digit longer than
the prefix that the key shares with the local node’s nodeld.
If no such node is known, the message is forwarded to a
node whose nodeld is numerically closer to the key and
shares a prefix with the key at least as long. If there is no
such node, the message is delivered to the local node.

Pastry updates routing state when nodes join and leave
the overlay. Joins are handled as described in [2] and fail-
ures are handled as follows. Pastry uses periodic probing
for failure detection. Every node sends a keep-alive to the
members of its leaf set every T;, seconds. Since the leaf
set membership is symmetric, each node should receive a
keep-alive message from each of its leaf set members. If it
does not, the node sends an explicit probe and assumes that
a member is dead if it does not receive a response within
T, Seconds. Additionally, every node sends a liveness
probe to each entry in its routing table every T, seconds.
Since routing tables are not symmetric, nodes respond to
these probes. If no response is received within T, an-
other probe is sent. The node is assumed faulty if no re-
sponse is received to the second probe within T,,;.

Faulty entries are removed from the routing state but it
is necessary to replace them with other nodes. It is suffi-
cient to replace leaf set entries to achieve correctness but it
is important to replace routing table entries to achieve log-
arithmic routing cost. Leaf set replacements are obtained
by piggybacking information about leaf set membership
in keep-alive messages. Routing table maintenance is per-
formed by periodically asking a node in each row of the
routing table for the corresponding row in its routing ta-
ble, and when a routing table slot is found empty during
routing, the next hop node is asked to return any entry it

may have for that slot. These mechanisms are described in
more detail in [2].

ENVIRONMENT MODEL Our analysis and some of our
cost reduction techniques assume that nodes join accord-
ing to a Poisson process with rate \ and leave according
to an exponential distribution with rate parameter p (as
in [4]). But we also evaluate our techniques using realistic
node arrival and departure patterns and simulated massive
correlated failures such as network partitions. We assume
a fail-stop model and conservatively assume that all nodes
leave ungracefully without informing other nodes and that
nodes never return with the same nodeld.

I11. RELIABILITY AND COST MODELS

Pastry forwards messages using UDP with no acknowl-
edgments by default. This is efficient and simple, but mes-
sages forwarded to a faulty node are lost. The probability
of forwarding a message to a faulty node at each hop is
Py(T,) = 1 — (1 — e~ "#), where T is the maximum
time it takes to detect the fault. There are no more than
logos N overlay hops in a Pastry route on average. Typi-
cally, the last hop uses the leaf set and the others use the
routing table. If we ignore messages lost by the underlying
network, the message loss rate, L, is:

L= 1_(1_Pf(T‘ls+Touta u))-(l_Pf(Trt+2Touta u))log?bN_l

Reliability can be improved by applications if re-
quired [9]. Applications can retransmit messages and set
a flag indicating that they should be acknowledged at each
hop. This provides very strong reliability guarantees [2]
because nodes can choose an alternate next hop if the pre-
viously chosen one is detected to be faulty. But waiting
for timeouts to detect that the next hop is faulty can lead
to very bad routing performance. Therefore, we use the
message loss rate, L, in this paper because it models both
performance and reliability — the probability of being able
to route efficiently without waiting for timeouts.

We can also derive a model to compute the cost of main-
taining the overlay. Each node generates control traffic
for five operations: leaf set keep-alives, routing table entry
probes, node joins, background routing table maintenance,
and locality probes. The control traffic in our setting is
dominated by the first two operations. So for simplicity,
we only consider the control traffic per second per node,
C, due to leaf set keep-alives and routing table probes:

128
1 2% 35,202 = 1) x (1= 0(0; N, 5ty)

C=—+
Tls Trt

20 20
‘ —T_rt=10s % —T_rt=10s
S5 —--T_rnt=30s |15 ---T_rt = 30s
° Lo e Tr=60s (&8 | - T_rt=60s
®10] | §10— . s s
g s 2 5
- 8’ L 4 *
IS
% ~ 50 T 100 % - 50 100
session timein minutes session timein minutes
(a) lossrate (b) controal traffic

Fig. 1. Verifying lossrate and control traffi ¢ models.

The first term is the cost of leaf set keep-alives: [keep-
alives every Tj, seconds. The second is the cost of rout-
ing table probing: two messages (probe and response) for
each routing table entry every T.,;. The summation com-
putes the expected number of routing table entries, where
b(k;n,p) is the binomial distribution.

We verified these equations using simulation. We
started by creating a Pastry overlay with 10,000 nodes.
Then we let new nodes arrive and depart according to a
Poisson processes with the same rate to keep the num-
ber of nodes in the system roughly constant. After ten
simulated minutes, 500,000 messages were sent over the
next ten minutes from randomly selected nodes to ran-
domly selected keys. Figure la shows the message loss
rate for three different values of 7;.; (10, 30 and 60 sec-
onds) with T;, fixed at 30 seconds. The x-axis shows the
mean session lifetime of a node (u = 1/lifetime). The
lines correspond to the values predicted with the loss rate
equation and the dots correspond to the simulation results
(three simulation runs for each parameter setting). Fig-
ure 1b shows a similar graph for control traffic. The results
show that both equations are quite accurate. As expected,
the loss rate decreases when T;.; (or Tjs) decrease but the
control traffic increases.

IV. REDUCING MAINTENANCE COST

This section describes our techniques to reduce the
amount of control traffic required to maintain the overlay.
We start by motivating the importance of observing and
adapting to the environment by discussing the characteris-
tics of realistic environments. Then, we explain the self-
tuning mechanism and the techniques to deal with massive
failures.

A. Node arrivals and departures in realistic environments

We obtained traces of node arrivals and failures from
two recent measurement studies of p2p environments. The
first study [10] monitored 17,000 unique nodes in the
Gnutella overlay over a period of 60 hours. It probed each
node every seven minutes to check if it was still part of

the overlay. The average session time over the trace was
approximately 2.3 hours and the number of active nodes
in the overlay varied between 1300 and 2700. Figure 2a
shows the failure rate over the period of the trace averaged
over 10 minute intervals. The arrival rate is similar. There
are large daily variations in the failure rate of more than a
factor of 3.

The Gnutella trace is representative of conditions in an
open Internet environment. The second trace [1] is repre-
sentative of a more benign corporate environment. It mon-
itored 65,000 nodes in the Microsoft corporate network,
probing each node every hour for a month. The average
session time over the trace was 37.7 hours. This trace
showed large daily as well as weekly variations in the fail-
ure rate, presumably because machines are switched off
during nights and weekends.

These traces show that failure rates vary significantly
with both daily and weekly patterns, and the failure rate
in the Gnutella overlay is more than an order of magni-
tude higher than in the corporate environment. Therefore,
the current static configuration approach would require not
only different settings for the two environments, but also
expensive configurations if good performance is desired at
all times. The next sections show how to achieve high re-
liability with lower cost in all scenarios.

B. Self-tuning

The goal of a self-tuning mechanism is to enable an
overlay to operate at the desired trade-off point between
cost and reliability. In this paper we show how to operate
at one such point — achieve a target routing reliability while
minimizing control traffic. The methods we use to do this
can be easily generalized to make arbitrary trade-offs.

In the loss rate and control traffic equations, there are
four parameters that we can set: T+, Tis, Tout, and I. Cur-
rently, we choose fixed values for T;; and [that achieve
the desired resilience to massive failures (Section 1V-C).
Tou 1s fixed at a value higher than the maximum expected
round trip delay between two nodes; it is set to 3 seconds
in our experiments (same as the TCP SYN timeout). We
tune T;.; to achieve the specified target loss rate by period-
ically recomputing it using the loss rate equation with the
current estimates of NV and n. Below we describe mech-
anisms that, without any additional communication, esti-
mate N and .

We use the density of nodelds in the leaf set to esti-
mate . Since nodelds are picked randomly with uniform
probability from the 128-bit id space, the average distance
between nodelds in the leaf set is 2!2% /. It can be shown
that this estimate is within a small factor of IV with very

<
= ~2
S g
1]] |
© o g
o | 9 1 il . ’f"ﬁw e e
2 2 7 " hand-tuned
— --- self-tuned
0.000 | | | , ; | } , ; | . ,
0 20 60 OO 20 40 60 OO 20 40 60 O'OO 20 40 60

hoursfrom start of trace
(b) loss rate / hand-tuned

40
hoursfrom start of trace
(a) Gnutellafailurerate

hoursfrom start of trace
(d) control traffic

hoursfrom start of trace
(c) lossrate/ self-tuned

Fig. 2. Self-tuning: (a) shows the measured failure rate in the Gnutella network; (b) and (c) show the loss rate in the hand-tuned
and self-tuned versions of Pastry; and (d) shows the control traffi ¢ in the two systems.

high probability, which is sufficient for our purposes since
the loss rate depends only on logss N.

The value of p is estimated by using node failures in
the routing table and leaf set. If nodes fail with rate g,
a node with M unique nodes in its routing state should
observe K failures in time MLM Every node remembers the
time of the last K failures. A node inserts its current time
in the history when it joins the overlay. If there are only
k < K failures in the history, we compute the estimate as
if there was a failure at the current time. The estimate of
wis ﬁ where T}, is the time span between the first

and the last failure in the history.

The accuracy of u’s estimate depends on K; increas-
ing K increases accuracy but decreases responsiveness to
changes in the failure rate. We improve responsiveness
when the failure rate decreases by using the current esti-
mate of y to discard old entries from the failure history that
are unlikely to reflect the current behavior of the overlay.
When the probability of observing a failure given the cur-
rent estimate of ;. reaches a threshold (e.g., 0.90) without
any new failure being observed, we drop the oldest failure
time from the history and compute a new estimate for .

We evaluated our self-tuning mechanism using simula-
tions driven by the Gnutella trace. We simulated two ver-
sions of Pastry: self-tuned uses the self-tuning mechanism
to adjust 7;.; to achieve a loss rate of 1%; and hand-tuned
sets T+ to a fixed value that was determined by trial and
error to achieve the same average loss rate. Hand-tuning
is not possible in real settings because it requires perfect
knowledge about the future. Therefore, a comparison be-
tween these two versions of Pastry provides a conservative
evaluation of the benefits of self-tuning.

Figures 2b and 2c show the loss rates achieved by the
self-tuned and the best hand-tuned versions, respectively.
The loss rate is averaged over 10 minute windows, and
is measured by sending 1,000 messages per minute from
random nodes to random keys. 1; was fixed at 30 seconds
in both versions and 7,; at 120 seconds for hand-tuned.
The results show that self-tuning works well, achieving the
target loss rate independent of the failure rate.

Figure 2d shows the control traffic generated by both the
hand-tuned and the self-tuned versions. The control traffic
generated by hand-tuned is roughly constant whereas the
one generated by self-tuned varies according to the failure
rate to meet the loss rate target. It is interesting to note that
the loss rate of hand-tuned increases significantly above
1% between 52 and 58 hours due to an increased failure
rate. The control traffic generated by the self-tuned version
clearly increases during this period to achieve the target
loss rate with the increased failure rate. If the hand-tuned
version was instead configured to always keep loss rate
below 1%, it would have generated over 2 messages per
second per node all the time.

We simulated the Microsoft corporate network trace
also and obtained similar results. The self-tuned version
achieved the desired loss rate with under 0.2 messages per
second per node. The hand-tuned version required a dif-
ferent setting for T;.; as the old value would have resulted
in an unnecessarily high overhead.

C. Dealing with massive failures

Next we describe mechanisms to deal with massive but
rare failures such as network partitions.

BROKEN LEAF SETS Pastry relies on the invariant that
each node has at least one live leaf set member on each
side. This is necessary for the current leaf set repair mech-
anism to work. Chord relies on a similar assumption [12].
Currently, Pastry uses large leaf sets (I = 32) to ensure that
the invariant holds with high probability even when there
are massive failures and the overlay is large [2].

We describe a new leaf set repair algorithm that uses
the entries in the routing table. It can repair leaf sets
even when the invariant is broken. So it allows the use
of smaller leaf sets, which require less maintenance traffic.

The algorithm works as follows. When a node n detects
that all members in one side of its leaf set are faulty, it se-
lects the nodeld that is numerically closest to n’s nodeld
on that side from among all the entries in its routing state.
Then it asks this seed node to return the entry in its routing

state with the nodeld closest to n’s nodeld that lies be-
tween the seed’s nodeld and »’s nodeld in the id space.
This process is repeated until no more live nodes with
closer nodelds can be found. The node with the closest
nodeld is then inserted in the leaf set and its leaf set is used
to complete the repair. To improve the reliability of the re-
pair process, we explore several paths in parallel starting
with different seeds.

The expected number of rounds to complete the repair
iS logos N. We improve convergence by adding a shadow
leaf set to the routing state. The shadow leaf set of node
n contains the /2 nodes in the right leaf set of its furthest
leaf on the right, and the [/2 nodes in the left leaf set of its
furthest leaf on the left. This state is acquired at no addi-
tional cost as leaf set changes are already piggybacked on
keep-alive messages, and is inexpensive to maintain since
nodes in it are not directly probed. Most leaf set repairs
complete in one round using the nodes in the shadow leaf
set. We also use the shadow leaf set to increase the accu-
racy of the estimate of V.

The experiments in this paper use a small leaf set with
I = 8. This is sufficient to ensure reliable operation with
high probability even when half the nodes fail simultane-
ously. At the same time it ensures that the leaf set repair
algorithm does not need to be invoked very often. For ex-
ample, the probability of all nodes in half of a leaf set fail-
ing within T3, = 30s is less than 10710 with the average
session time in the Gnutella trace.

MASSIVE FAILURE DETECTION The failure of a large
number of nodes in a small time interval results in a large
number of faulty entries in nodes’ routing tables, which
increases loss rate. This is resolved when nodes detect that
the entries are faulty and repair the routing tables. But
it can take very long in environments with low average
failure rate because the self-tuning mechanism sets 7T;.; to
a large value. We reduce the time to repair routing tables
using a mechanism to detect massive failures.

The members of a leaf set are randomly distributed
throughout the underlying network. So a massive failure
such as a network partition is likely to manifest itself as
failure of several nodes in the leaf set within the same
probing period. When a node detects a number of faults
in the same probing period that exceeds a specified frac-
tion of [, it signals the occurrence of a massive failure and
probes all entries in its routing table (failures discovered
during this probing are not used for estimating p as the
background failure rate has not changed). This reduces
the time to repair the routing tables after the failure to
T1s + Tour Seconds. We set an upper bound on the value
of T}, that achieves the desired repair time. In the experi-
ments described in this paper, the threshold on the number
of faults for failure detection is 30% and T}, = 30s.

~
o

5

-+-hops 2

AGO’ —|ossrate 1 4€
X 501 R 2
@ 401 33
ﬁ o
8 20 S
—_ 1 =
o :

0L

LY, 2]
0 20 40 60 80 100 150
simulation timein minutes

Fig. 3. Impact of half the nodes in the overlay failing together.

We evaluated our mechanisms to deal with massive fail-
ures using a simulation with 10,000 nodes where we failed
half the nodes 40 minutes into the simulation. In addition
to this failure, nodes were arriving and departing the over-
lay according to a Poisson process with a mean lifetime
of 2 hours. 10,000 messages per minute were sent from
random sources to random keys. Figure 3 shows the aver-
age loss rate and number of overlay hops in each minute.
There is a large peak in the loss rate when the massive fail-
ure occurs but Pastry is able to recover in about a minute.
Recovery involved not only detecting the partition and re-
pairing routing tables but also repairing several broken leaf
sets.

V. APPLICABILITY BEYOND PASTRY

The work presented in this paper is relevant to other
structured p2p overlay networks as well. In this section,
we briefly outline how it applies to other networks. Due to
space constraints, we only describe how it can be applied
to CAN [6] and Chord [12], and we assume that the reader
has a working knowledge of CAN and Chord.

The average number of hops in CAN is 4N/ (where d
is the number of dimensions) and is %ZOQQN in Chord. We
can use these equations to compute the average loss rate
for a given failure rate (1) and number of nodes (V) as we
did for Pastry. The average size of the routing state is 2d in
CAN and loga N + [(where [is the successor set size) in
Chord. We can use these equations and the probing rates
used in CAN and Chord to compute the amount of control
traffic.

Self-tuning requires an estimate of N and p. Our ap-
proach for estimating N using density can be generalized
easily — the size of local and neighboring zones, and the
density of the successor set can be used respectively for
CAN and Chord. We can estimate x in CAN and Chord
using the failures observed in the routing state exactly as
we did in Pastry.

The leaf set repair algorithm applies directly to Chord’s
successor set. A similar iterative search mechanism can

be used when a CAN node loses all its neighbors along
one dimension (the current version uses flooding). Finally,
partition detection can be done using the successor set in
Chord and neighbors in CAN.

VI. RELATED WORK

Most previous work has studied overlay maintenance
under static conditions but the following studied dynamic
environments where nodes continuously join and leave the
overlay. Saia et al use a butterfly network to build an over-
lay that routes efficiently even with large adversarial fail-
ures provided that the network keeps growing [8]. Pan-
durangan et al present a centralized algorithm to ensure
connectivity in the face of node failures [5]. Liben-Nowell
et al provide an asymptotic analysis of the cost of main-
taining Chord [12]. Ledlie et al [3] present some simula-
tion results of Chord in an idealized model with Poisson
arrivals and departures. We too study the overlay main-
tenance cost in dynamic environments but we provide an
exact analysis in an idealized model together with simu-
lations using real traces. Additionally, we describe new
techniques to reduce this cost while providing high relia-
bility and performance.

Weatherspoon and Kubiatowicz have looked at efficient
node failure discovery [13]; they propose that nodes fur-
ther away be probed less frequently to reduce wide area
traffic. In contrast, we reduce the cost of failure discovery
through adapting to the environment. The two approaches
can potentially be combined though their approach makes
the later hops in Tapestry (and Pastry) less reliable, with
messages more likely to be lost after having been routed
for a few initial hops.

VII. CONCLUSIONS AND FUTURE WORK

There are general concerns over the cost of maintain-
ing structured p2p overlay networks. We examined this
cost in realistic dynamic conditions, and presented novel
techniques to reduce this cost by observing and adapting
to the environment. These techniques adjust control traffic
based on observed failure rate and they detect and recover
from massive failures efficiently. We evaluated these tech-
niques using mathematical analysis and simulation with
real traces. The results show that concerns over the overlay
maintenance cost are no longer warranted. Our techniques
enable high reliability and performance even in adverse
conditions with low maintenance cost. Though done in the
context of Pastry, this work is relevant to other structured
p2p networks such as CAN, Chord and Tapestry.

As part of ongoing work, we are exploring different
self-tuning goals and methods. These include i) oper-
ating at arbitrary points in the reliability vs. cost curve

and using different performance or reliability targets; i)
choosing a self-tuning target that takes into account the
application’s retransmission behavior, such that total traf-
fic is minimized; and 7i7) varying T;s (has implications for
detecting leaf set failures since keep-alives are unidirec-
tional) along with T;., under the constraint that 7;5 has an
upper bound determined by the desired resilience to mas-
sive failures. We are also studying the impact of failures
on other performance criteria such as locality.

ACKNOWLEDGEMENTS

We thank Ayalvadi Ganesh for help with mathematical
analysis, and John Douceur and Stefan Saroiu for the trace
data used in this paper.

REFERENCES

[1] W.J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility
of a serverless distributed fi le system deployed on an existing set
of desktop PCs. In ACM SGMETRICS, June 2000.

[2] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploiting
network proximity in peer-to-peer overlay networks. Technical
Report MSR-TR-2002-82, Microsoft Research, May 2002.

[3] J Ledlie, J. Taylor, L. Serban, and M. Seltzer. Self-organization
in peer-to-peer systems. In ACM SIGOPS European \Workshop,
Sept. 2002.

[4] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of
the evolution of peer-to-peer systems. In ACM Principles of Dis-
tributed Computing (PODC), July 2002.

[5] G. Pandurangan, P. Raghavan, and E. Upfa. Building low-
diameter peer-to-peer networks. In |[EEE FOCS, Oct. 2001.

[6] S.Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In SGCOMM, Aug. 2001.

[71 A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems. In
IFIP/ACM Middleware, Nov. 2001.

[8] J. Saia A.Fiat, S. Gribble, A. Karlin, and S. Saroiu. Dynamically
fault-tolerant content addressable networks. In IPTPS, Mar. 2002.

[9] J Sdltzer, D. Reed, and D. Clarke. End-to-end argumentsin sys-

tem design. ACM TOCS, 2(4), Nov. 1984.

S. Saroiu, K. Gummadi, and S. Gribble. A measurement study of

peer-to-peer fi le sharing systems. In MMCN, Jan. 2002.

S. Sen and J. Wang. Analyzing Peer-to-Peer Traffi c Across

Large Networks. In Proc. ACM SGCOMM Internet Measure-

ment Workshop, Marseille, France, Nov. 2002.

|. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-

nan. Chord: A scalable peer-to-peer lookup service for Internet

applications. In ACM SGCOMM, Aug. 2001.

H. Weatherspoon and J. Kubiatowicz. Effi cient heartbeats and re-

pair of softstate in decentralized object location and routing sys-

tems. In ACM SIGOPS European Workshop, Sept. 2002.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An

infrastructure for fault-resilient wide-area location and routing.

Technical Report UCB-CSD-01-1141, U. C. Berkeley, Apr. 2001.

[10]

[11]

[12]

[13]

[14]

